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Abstract

This paper addresses the construction of absorbing boundary
conditions for the one-dimensional Schrödinger equation with a
general variable repulsive potential or with a cubic nonlinearity.
Semi-discrete time schemes, based on Crank-Nicolson approxima-
tions, are built for the associated initial boundary value problems.
Finally, some numerical simulations give a comparison of the var-
ious absorbing boundary conditions to analyse their accuracy and
efficiency.

1 Introduction

We consider in this paper two kinds of initial value problems. The first
one consists in a time-dependent Schrödinger equation with potential V
set in an unbounded domain{

i∂tu+ ∂2
xu+ V u = 0, (x, t) ∈ R× [0;T ],

u(x, 0) = u0(x), x ∈ R,
(1.1)
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where u0 in the initial data. The maximal time of computation is denoted
by T . We assume in this article that V is a real-valued potential such
that V ∈ C∞(R×R+,R). This kind of potential then creates acceleration
of the field compared to the free-potential equation [10, 17].

Our second interest concerns the one-dimensional cubic nonlinear
Schrödinger equation{

i∂tu+ ∂2
xu+ q |u|2 u = 0, (x, t) ∈ R× [0;T ],

u(x, 0) = u0(x), x ∈ R,
(1.2)

where the real parameter q corresponds to a focusing (q > 0) or de-
focusing (q < 0) effect of the cubic nonlinearity. This equation has the
property to possess special solutions which propagate without dispersion,
the so-called solitons.

For obvious reasons linked to the numerical solution of such problems,
it is usual to truncate the spatial computational domain with a fictitious
boundary Σ := ∂Ω = {xl, xr}, where xl and xr respectively designate
the left and right endpoints introduced to have a bounded domain of
computation Ω =]xl;xr[. Let us define the time domains ΩT = Ω× [0;T ]
and ΣT = Σ× [0;T ]. Considering the fictitious boundary Σ, we are now
led to solve the problem{

i∂tu+ ∂2
xu+ V u = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ Ω,
(1.3)

where V can denote either the real potential V (x, t) or the cubic nonlin-
earity q |u|2 (x, t). In the sequel of the paper, we assume that the initial
datum u0 is compactly supported in the computational domain Ω.

Of course, a boundary condition set on ΣT must be added to systems
(1.3). An ideal exact boundary condition answering the problem is the
so-called Transparent Boundary Condition (TBC) which leads to a so-
lution of (1.3) equal to the restriction of the solution of (1.1) or (1.2) on
ΩT . A first well-known case considers V = 0. This situation has been
treated by many authors [2]. In this case, which is precisely described
in Section 2.2, we are able to build the following TBC in term of the
Dirichlet-to-Neumann (DtN) operator

∂nu+ e−iπ/4∂
1/2
t u = 0, on ΣT , (1.4)

where n is the outwardly directed unit normal vector to Σ. The operator
∂

1/2
t is known as the half-order derivative operator (see Equation (2.7)

for its definition). Its nonlocal character related to its convolutional
structure has led to many developments concerning its accurate and
efficient evaluation in the background of TBCs [2].
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A second situation which is related to the above case is when the
potential is only time varying: V = V (x, t) = V (t). In this case, the
change of unknown

v(x, t) = e−iV(t)u(x, t), (1.5)

with

V(t) =
∫ t

0

V (s) ds (1.6)

reduces the initial Schrödinger equation with potential to the free-poten-
tial Schrödinger equation [4]. Then, the TBC (1.4) can be used for v
and the resulting DtN TBC for u is

∂nu(x, t) + e−iπ/4eiV(t) ∂
1/2
t

(
e−iV(t)u(x, t)

)
= 0, on ΣT . (1.7)

This change of variables is fundamental and, coupled to a factor-
ization theorem, allows to derive accurate approximations of the TBC,
which are usually called artificial or Absorbing Boundary Conditions
(ABCs), in situations where V = V (x, t) [5] and V = q |u|2 [4]. Fami-
lies of ABCs can be computed and are classified following their degree of
accuracy. Typically, for a general function V , the first ABC would be ex-
actly (1.7), where V(t) has to be replaced by V(x, t) =

∫ t
0

V (x, s)ds. The
ABC gives quite satisfactory accurate results but its evaluation remains
costly since it involves the nonlocal time operator ∂1/2

t . In [5], an other
kind of ABCs was introduced, their numerical treatments being based
on Padé approximants. It therefore gives rise to a local approximation
scheme which is very competitive.

The aim of the present paper is to present precisely the link between
the two different types of ABCs set up in [5] and [4] and to extend the
local ABC derived for V = V (x, t) to the cubic nonlinear Schrödinger
equation. Moreover, associated unconditionally stable schemes are given
and numerical results are reported.

For completeness, we must mention that recent attempts have been
directed towards the derivation of TBCs for special potentials. In [15],
the case of a linear potential is considered in the background of parabolic
equations in electromagnetism. Using the Airy functions, the TBC can
still be written and its accuracy is tested. In [27], Zheng derives the TBC
in the special case of a sinusoidal potential using Floquet’s theory. All
these solutions take care of the very special form of the potential. Let
us remark that other solutions based on PML techniques have also been
applied e.g. in [26]. Concerning the nonlinear case, using paradiffer-
ential operators techniques, Szeftel [24] presented other kinds of ABCs.
Moreover, a recent paper [6] gives a comprehensive review of current
developments related to the derivation of artificial boundary conditions
for nonlinear partial differential equations following various approaches.
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The present paper is organized as follows. In Section 2, we recall the
derivation of open boundary conditions for linear Schrödinger equations.
Subsection 2.1 concerns the derivation of the TBC, and Subsection 2.2
gives some possible extensions and their interpretations in the context of
pseudodifferential calculus. This tool is the essential ingredient used in
Section 3 where two possible approaches for building ABCs for the one-
dimensional Schrödinger equation with a variable repulsive potential are
given. Section 4 is devoted to their numerical discretization and the un-
derlying properties of the proposed schemes. Section 5 is concerned with
the nonlinear case for which we explain the links between the different
approaches and propose a new family of ABCs for the cubic nonlinear
Schrödinger equation. Numerical schemes are also analysed. Section 6
presents some numerical computations. These simulations show the high
accuracy and efficiency of the proposed ABCs. Moreover, comparisons
are provided between the different approaches. Finally, a conclusion is
given in Section 7.

2 Open boundary conditions for linear Schrö-
dinger equations

2.1 The constant coefficients case: derivation of the
TBC

We recall in this Section the standard derivation of the Transparent
Boundary Condition (TBC) in the context of the following 1D Schrödin-
ger equation

i∂tu+ ∂2
xu+ V (x, t)u = 0, (x, t) ∈ ΩT ,

lim
|x|→∞

u(x, t) = 0,

u(x, 0) = u0(x), x ∈ Ω,

(2.1)

where the initial datum u0 is compactly supported in Ω and the given
real potential V is zero outside Ω. It is well-known that the previous
equation (2.1) is well-posed in L2(R) (see e.g. [22, 23]) and that the ”den-
sity” is time preserved, i.e., ‖u(t)‖L2(R) =

∥∥u0

∥∥
L2(R)

, ∀t ≥ 0. The TBC
for the Schrödinger equation (2.1) were independently derived by several
authors from various application fields [20, 21, 8, 11, 13]. Such a TBC is
nonlocal according to the time variable t and connects the Neumann da-
tum ∂xv(xl,r, t) to the Dirichlet one v(xl,r, t). As a Dirichlet-to-Neumann
(DtN) map it reads

∂nv(x, t) = −e
−iπ/4
√
π

d

dt

∫ t

0

v(x, τ)√
t− τ

dτ on ΣT , (2.2)
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where ∂n is the outwardly directed unit normal derivative to Ω.
The derivation of the TBC (2.2) is performed from Eq. (2.1) and

is based on the decomposition of the Hilbert space L2(R) as L2(Ω) ⊕
L2(Ωr∪Ωl) where Ω =]xl, xr[, Ωl =]−∞, xl], and Ωr = [xr,∞[. Eq. (2.1)
is equivalent to the coupled system of equations

8<: (i∂t + ∂2
x)v = −V (x, t)v, (x, t) ∈ ΩT ,

∂xv(x, t) = ∂xw(x, t), (x, t) ∈ ΣT

v(x, 0) = u0(x), x ∈ Ω,
(2.3)

8>><>>:
(i∂t + ∂2

x)w = 0, x ∈ Ωl ∪ Ωr, t > 0,
w(x, t) = v(x, t), (x, t) ∈ ΣT ,
lim|x|→∞ w(x, t) = 0, t > 0,
w(x, 0) = 0, x ∈ Ωl ∪ Ωr.

(2.4)

This splitting of the spatial domain R into interior and exterior prob-
lems is explained on Fig. 2.1. It shows the basic idea for constructing
the TBC. The Transparent Boundary Condition is obtained by applying

������

������

probleminterior problem
left exterior

problem
right exterior

(x,t)

x x
L R

output: input:

L(x ,t)Lx(x ,t)

Dirichlet data Neumann data

v

vw

Figure 2.1: Domain decomposition for the construction of the TBC.

the Laplace transformation L with respect to the time t to the exterior
problems (2.4). The Laplace transform is defined through the relation
ŵ(s) := L(w)(s) :=

∫
R+ w(t)e−stdt, where s = σ + iτ is the time covari-

able with σ > 0.
In the following, we focus on the derivation of the TBC at the right

endpoint xr. The Laplace transformation of (2.4) (on Ωr) reads isŵ +
∂2
xŵ = 0, x ∈ Ωr. The solution to this second-order ode with constant co-

efficients can be computed as ŵ(x, s) = A+(s)e
+√−is x +A−(s)e−

+√−is x,
x > xr, where the branch-cut of the square root +

√
is taken such that

the real part is positive. However, since the solution is an element of
L2(Ωr), the coefficient A+ must vanish. Using the Dirichlet data at the
artificial boundary yields ŵ(x, s) = e−

+√−is (x−xr) ŵ(x, s)|x=xr . Deriving
ŵ(x, s) with respect to x gives

∂xŵ(x, s)|x=xr = − +
√
−is ŵ(x, s)|x=xr . (2.5)

The analogous condition at the left boundary is −∂xŵ(x, s)|x=xl =
− +
√
−is ŵ(x, s)|x=xl . Applying an inverse Laplace transformation L−1

allows to obtain an expression of the Neumann datum ∂xw(xl,r, t) as a
function of the Dirichlet one. Since we have continuity of the traces on
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ΣT , the boundary condition of equation (2.3) is into

∂nv(x, t) = L−1(− +
√
−i· v̂(x, ·))(t) =

t∫
0

f(t− τ)v(x, τ) dτ, on ΣT ,

(2.6)
where L(f)(s) = − +

√
−is. By construction we have that u coincides

with v on Ω, meaning that we have an exact or a Transparent Boundary
Condition (TBC) given by the second equation of (2.6).

All this analysis could also be performed using the time Fourier trans-
form Ft

Ft(u)(x, τ) =
1

2π

∫
R
u(x, t)e−itτdt,

which roughly speaking corresponds to let σ → 0 in the expression of
the Laplace transform and induces the following definition of the square
root

√
τ =
√
τ if τ ≥ 0 and

√
τ = −i

√
−τ if τ < 0. The condition (2.5)

is thus replaced by

∂xFtw(x, τ)|x=xr = i
√
−τ Ftw(x, τ)|x=xr .

We recover the TBC on ΣT with ∂nv(x, t) = Ft
−1(i
√
−·Ftv(x, ·))(t).

This expression or its Laplace version ∂nv(x, t) = L−1(− +
√
−i· v̂(x, ·))(t)

can be simply written at points x = xl,r as follows

∂nv(x, t) = −e−iπ/4∂1/2
t v(x, t).

The term ∂
1/2
t =

√
∂t has to be interpreted as a fractional half-order time

derivative. We recall that the derivative ∂k−αt f(t) of order k − α > 0 of
a function f , with k ∈ N and 0 < α ≤ 1, is defined by

∂k−αt f(t) =
1

Γ(α)
dk

dtk

∫ t

0

(t− τ)α−1f(τ)dτ, (2.7)

where Γ(z) =
∫ +∞

0
e−ttz−1dz denotes the Gamma function. In the same

spirit, one can also define the integration of real order p > 0 of a function
f , denoted by Ipt f(t), by

Ipt f(t) =
1

Γ(p)

∫ t

0

(t− τ)p−1f(τ)dτ. (2.8)

At this point, an interesting remark is that the Schrödinger equation
can formally be factorized into left and right traveling waves (cf. [8]):(

∂x − e−i
π
4 ∂

1/2
t

)(
∂x + e−i

π
4 ∂

1/2
t

)
u = 0, x > xr. (2.9)

This remark is crucial since it gives the idea to use a Nirenberg-like the-
orem in Section 3.2 for general variable coefficients equations (including
potentials for instance).
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2.2 Extensions and interpretations in the context of
pseudodifferential operator calculus: introduc-
tion to the derivation of ABCs

The first possible extension is to consider a given real potential V which
is constant in space outside Ω, i.e., V (x, t) = Vl(t) for x < xl, V (x, t) =
Vr(t) for x > xr. An easy computation, which consists in applying the
following gauge change in (2.1), reduces this case to the zero exterior
potential [3] for the new unknown

ψl,r = e−iVl,r(t)ul,r, with Vl,r(t) =
∫ t

0

Vl,r(s)ds, ∀t > 0. (2.10)

The resulting TBC is then given by

∂nu+ e−iπ/4eiVl,r(t)∂
1/2
t (e−iVl,r(t))u) = 0, on ΣT . (2.11)

The analysis based on Laplace or Fourier transforms and performed in
the previous subsection can also be done if the potential is constant
outside Ω. This would lead to

∂nu(x, t) =

t∫
0

f(t− τ)u(x, τ) dτ, on ΣT , (2.12)

where L(f)(s) = − +
√
−is− Vl,r. Therefore, the Schrödinger equation

can formally and exactly be factorized into left and right traveling waves
(cf. [8]):

(∂x − e−i
π
4 +
√
∂t − iVr)(∂x + e−i

π
4 +
√
∂t − iVr)u = 0, x > xr.

To understand and to make clearer the link between expressions (2.11)
and (2.12), we have to introduce the notion of pseudodifferential op-
erator. A pseudodifferential operator P (x, t, ∂t) is given by its symbol
p(x, t, τ) in the Fourier space

P (x, t, ∂t)u(x, t) = F−1
t

(
p(x, t, τ)û(x, τ)

)
=
∫

R
p(x, t, τ) Ft(u)(x, τ) eitτ dτ.

(2.13)

The inhomogeneous pseudodifferential operator calculus used in the pa-
per was first introduced in [14]. For self-conciseness reasons, we only
present the useful notions required here. Let α be a real number and
Ξ an open subset of R. Then (see in [19]), the symbol class Sα(Ξ × Ξ)
denotes the linear space of C∞ functions a(·, ·, ·) in Ξ× Ξ×R such that
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for each K ⊆ Ξ × Ξ and for all indices β, δ, γ, there exists a constant
Cβ,δ,γ(K) such that |∂βτ ∂δt ∂γxa(x, t, τ)| ≤ Cβ,δ,γ(K)(1 + |τ |2)α−β , for all
(x, t) ∈ K and τ ∈ R. A function f is said to be inhomogeneous of
degree m if: f(x, t, µ2τ) = µmf(x, t, τ), for any µ > 0. Then, a pseu-
dodifferential operator P = P (x, t, ∂t) is inhomogeneous and classical of
order M , M ∈ Z/2, if its total symbol, designated by p = σ(P ), has an
asymptotic expansion in inhomogeneous symbols {pM−j/2}+∞j=0 as

p(x, t, τ) ∼
+∞∑
j=0

pM−j/2(x, t, τ),

where each function pM−j/2 is inhomogeneous of degree 2M − j, for
j ∈ N. The meaning of ∼ is that

∀m̃ ∈ N, p−
em∑
j=0

pM−j/2 ∈ SM−( em+1)/2.

A symbol p satisfying the above property is denoted by p ∈ SMS and the
associated operator P = Op(p) by inverse Fourier transform (according
to (2.13)) by P ∈ OPSMS . Finally, let us remark that smoothness of the
potential V is required for applying pseudodifferential operators theory.
However, this is crucial into the complementary set of Ω but a much
weaker regularity assumption could be expected for the interior problem
set in Ω allowing therefore a wide class of potentials.

Let us come back to the comparison of relations (2.11) and (2.12) in
the case of a constant potential outside Ω. With the previous definitions,
Eqs. (2.11) and (2.12) respectively read

∂nu(x, t) + ieiVl,rtOp
(
−
√
−τ
)

(e−iVl,rtu)(x, t) = 0, on ΣT , (2.14)

and

∂nu(x, t) + iOp
(
−
√
−τ + Vl,r

)
(u)(x, t), on ΣT . (2.15)

Actually, these two formulations are equivalent thanks to the following
Lemma (see [5] for a proof).

Lemma 2.1. If a is a t-independent symbol of Sm and V (x, t) = V (x),
then the following identity holds

Op (a(τ − V (x)))u = eitV (x)Op (a(τ))
(
e−itV (x)u(x, t)

)
. (2.16)

In our case, since V is also x-independent, one gets

iOp
(
−
√
−τ + Vl,r

)
(u)(x, t) = ieiVl,rtOp

(
−
√
−τ
)

(e−iVl,rt)u)(x, t),
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which explains the close link between (2.11) and (2.12).
Lemma (2.1) has other applications when the potential V depends

on the spatial variable x. To emphasize this point, let us develop some
approximations of the TBC for the case of a linear potential V (x, t) =
x. Applying a Fourier transform in time, the Schrödinger equation:
i∂tu + ∂2

xu + xu = 0 sets on ΩT becomes the Airy equation ∂2
xFtu +

(−τ + x)Ftu = 0. The solution to this equation which is outgoing is
given by Ftu(x, τ) = Ai

(
(x− τ)e−iπ/3

)
, where Ai stands for the Airy

function [1]. Deriving this expression according to x, we obtain the exact
relation expressing the corresponding DtN map in the Fourier space

∂nFtu(x, τ) = e−iπ/3
Ai′
(
(x− τ)e−iπ/3

)
Ai
(
(x− τ)e−iπ/3

) Ftu(x, τ), (2.17)

giving therefore the total symbol. The numerical approximation of the
corresponding TBC is difficult to handle and approximations are needed.
For sufficiently large values of |τ |, one has the following approximation

e2iπ/3 Ai′
(
(x− τ)e−iπ/3

)
Ai
(
(x− τ)e−iπ/3

) ≈ −e−iπ/6√−τ + x.

If we replace the total (left) symbol by its approximation, we obtain what
is usually called an artificial or Absorbing Boundary Condition (ABC)

∂nu+ iOp
(
−
√
−τ + x

)
(u) = 0, on ΣT . (2.18)

Thanks to Lemma (2.1) and since V (x, t) = x, this ABC is strictly
equivalent to

∂nu+ e−iπ/4eitxl,r∂
1/2
t (e−itxl,ru) = 0, on ΣT . (2.19)

Let us remark that, in the specific case of a linear potential, a change of
unknown allows to transform the Schrödinger equation with linear poten-
tial into another Schrödinger equation without potential [10]. Indeed, if
v is solution to i∂tv+∂2

xv = 0, then u(x, t) = e−i(−αtx+ t3
3 |α|

2)v(x−t2α, t)
is solution to i∂tu+ ∂2

xu+ αxu = 0.
At this point, some partial conclusions can be drawn

• Formally, the operator i∂t + ∂2
x + V can be (exactly or approxi-

mately) factorized as

i∂t + ∂2
x + V =

(
∂x + i

√
i∂t + V

)(
∂x − i

√
i∂t + V

)
,

according to the (x, t)-dependence of the potential. In the above
right hand side, the second term characterizes the DtN map in-
volved in the TBC or ABC.
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• Transparent Boundary Conditions or Absorbing Boundary Condi-
tions are written through a DtN operator either

∂nu+ iOp
(
−
√
−τ
)

(u) = 0, on ΣT ,

or
∂nu+ iOp

(
−
√
−τ + V

)
(u) = 0, on ΣT .

• If V (x, t) = V (t), the change of unknown v(x, t) = e−iV(t)u(x, t),
with V(t) =

∫ t
0
V (s)ds, reduces the Schrödinger equation with po-

tential to a free-Schrödinger equation and the TBC is then

∂nu(x, t) + e−iπ/4eiV(t)∂
1/2
t

(
e−iV(t)

)
(x, t) = 0, on ΣT .

3 ABCs for the linear Schrödinger equation
with a general variable potential

3.1 Two possible strategies

It is clear from the above analysis that we cannot expect to get a TBC
for real general potentials. We then need to derive some approximations
and most specifically to compute ABCs using the previously introduced
pseudodifferential operator calculus which extends the Laplace trans-
form based approach to variable coefficients operators. Furthermore, it
enables to manipulate symbols of operators at the algebraic level instead
of operators at the functional level. The partial conclusions given at the
end of the previous section lets to think that two possible strategies to
build ABCs can be considered.

The first natural approach would consist in building an approximate
boundary condition based on the equation (1.1) with unknown u. How-
ever, even if this approach seems direct, it is quite intricate and for this
reason it will be designated as strategy 2 in the sequel.

A second possibility, called strategy 1, is the following. Let us con-
sider now that u is the solution to Eq. (1.1) and let us define V as a
primitive in time of the potential V

V(x, t) =
∫ t

0

V (x, s) ds. (3.1)

Following the Gauge change (2.10), let us introduce v as the new un-
known defined by

v(x, t) = e−iV(x,t)u(x, t). (3.2)
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We obviously have v0(x) = u0(x). Moreover, plugging u given by (3.1)-
(3.2) into the Schrödinger equation with potential shows that v is solu-
tion to the variable coefficients Schrödinger equation

i∂tv + ∂2
xv + f ∂xv + g v = 0, in ΩT , (3.3)

setting f = 2i∂xV and g = i∂2
xV − (∂xV)2. The fundamental reason

why considering this change of unknown is crucial is that this first step
leads to the TBC (2.11) applied to v and associated to (3.3) for a time-
dependent potential (since then f = g = 0).

We will see later that these two approaches lead to different absorbing
boundary conditions which however coincide in some situations.

3.2 Practical computation of the asymptotic expan-
sion of the DtN operator

We explain here how to compute the asymptotic expansion of the DtN
operator for a given model Schrödinger equation with smooth variable
coefficients A and B

L(x, t, ∂x, ∂t)w = i∂tw + ∂2
xw +A∂xw +Bw = 0. (3.4)

Since we are trying to build an approximation of the DtN operator at
the boundary, we must be able to write the normal derivative trace
operator ∂x (focusing on the right point xr) as a function of the trace
operator through an operator Λ+ which involves some (fractional) time
derivatives/integrals of w as well as the effects of the potential V and its
(x, t) variations. This can be done in an approximate way thanks to the
factorization of L given by relation (3.4)

L(x, t, ∂x, ∂t) = (∂x + iΛ−)(∂x + iΛ+) +R, (3.5)

where R ∈ OPS−∞ is a smoothing pseudodifferential operator. This
relation corresponds to the formal factorization presented at the end of
section 2.2. The operators Λ± are pseudodifferential operators of order
1/2 (in time) and order zero in x. Computing the operators Λ± in
an exact way through their respective total symbols σ(Λ±) cannot be
expected in general (which would therefore provide a TBC). A more
realistic approach consists in seeking an asymptotic form of the total
symbol σ(Λ±) as

σ(Λ±) = λ± ∼
+∞∑
j=0

λ±1/2−j/2, (3.6)

where λ±1/2−j/2 are symbols corresponding to operators of order 1/2−j/2.
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Now, expanding the factorization (3.5), identifying the terms in L
in front of the operators ∂x with the ones from the expanded factoriza-
tion and finally using a few symbolic manipulations yield the system of
equations 

i(λ− + λ+) = a

i∂xλ
+ −

∞∑
α=0

(−i)α

α!
∂ατ λ

− ∂αt λ
+ = −τ + b,

(3.7)

with a(x, t) = σ(A) = A, b(x, t) = σ(B) = B, since A and B are two
functions of (x, t).

Looking at the first equation of system (3.7), we see that we must
have: λ−1/2 = −λ+

1/2. Now, if we identify the highest order symbol in the
second equation of system (3.7), then one gets four possibilities

λ+
1/2(τ) = ∓

√
−τ (3.8)

and
λ+

1/2(x, t, τ) = ∓
√
−τ + b(x, t). (3.9)

The first choice can be viewed as considering a principal classical symbol
while the second possibility rather referees to as a semi-classical symbol
(see e.g. in [10]).

Let us now consider the strategy 1 based on the gauge change leading
to compute v solution to (3.3) for A = f and B = g. Following the
derivation of the TBCs made in section 2.2, the principal symbol with
negative imaginary part characterizes the outgoing part of the solution
u. A study of the sign of (3.8) (for a real-valued potential V ) shows that
the negative sign leads to the correct choice. Since g is a complex-valued
potential with no controlled sign, we cannot determine the outgoing wave
for (3.9). The only possible choice is then

λ+
1/2 = −

√
−τ . (3.10)

Let us now consider the second strategy which consists in working
on equation (1.1) for u setting A = 0 and B = V . The study of the
sign of (3.8) and (3.9) for a real-valued potential V is possible in both
cases and as for the first strategy, the negative sign provides the suitable
solution. Therefore, we obtain the two possible symbols λ+

1/2 = −
√
−τ

and λ+
1/2 = −

√
−τ + V . However, considering λ+

1/2 = −
√
−τ would give

some symbols which are approximations of λ+
1/2 = −

√
−τ + V by using

a truncated Taylor expansion when |τ | → +∞. Since this case leads to
less accurate ABCs, we will only consider next the case

λ+
1/2 = −

√
−τ + V . (3.11)
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Choosing the principal symbol is a crucial point since it is directly
related to the accuracy of the ABC. Moreover, for a given choice of
the principal symbol, the corrective asymptotic terms {λ+

1/2−j/2}j≥1 are
different since they are computed in cascade developing the infinite sum
in the second equation of (3.7) as seen in the following Proposition.

Proposition 3.1. Let us fix λ+
1/2 by the expression (3.10). Then, the

solution to system (3.7) is given by

λ+
0 =

1
2λ+

1/2

(
−i(∂x + a)λ+

1/2

)
, (3.12)

and, for j ∈ N, j ≥ 1, by

λ+
−j/2 =

1
2λ+

1/2

(
b δj,1 − i(∂x + a)λ+

−j/2+1/2 +−
j∑

k=1

λ+
−j/2+k/2λ

+
1/2−k/2

−
(j+1)/2∑
α=1

(−i)α

α!

j+1−2α∑
k=0

∂ατ λ
+
−j/2+k/2+α∂

α
t λ

+
1/2−k/2

 (3.13)

where δj,1 = 0 if j 6= 1 and δ1,1 = 1.

Applying the above proposition to our situation, one obtains the
following corollary.

Corollary 3.2. In strategy 1 (a = f and b = g), if we fix the prin-
cipal symbol λ+

1/2 = −
√
−τ in (3.7), then the next three terms of the

asymptotic symbolic expansion are given by using (3.12) as

λ+
0 = ∂xV, λ+

−1/2 = 0 and λ+
−1 =

i∂xV

4τ
. (3.14)

In the case of the second strategy (a = 0 and b = V ) and for λ+
1/2 =

−
√
−τ + V , we cannot obtain a general formula as for Proposition 3.1.

However, the first terms can still be computed to as

λ+
0 = 0, λ+

−1/2 = 0, and λ+
−1 =

−i
4

∂xV

−τ + V
. (3.15)

In the case of a linear potential V = x, we saw that the total symbol
is

λ+ = e2iπ/3 Ai′
(
(x− τ)e−iπ/3

)
Ai
(
(x− τ)e−iπ/3

) . (3.16)

The application of Corollary 3.2 in the context of strategy 2 gives the
first and second-order approximate symbols σ1 = iλ+

1/2 = −i
√
−τ + x
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Figure 3.1: Logarithm of the absolute error |λ+ − σ1| and |λ+ − σ2| with respect to
τ . A singularity is observed at |τ − xr| = 0, with xr = 10.

and σ2 = iλ+
1/2 + iλ+

0 = σ1 + 1
4

1
−τ+x , setting V = x. These two relations

give good approximations of λ+(x, τ) for sufficiently large values of |x−τ |
(see Fig. 3.1 for x = 10), corresponding to a high frequency spectrum
approximation. This test case shows the validity of our approach in this
situation.

3.3 Choosing the ABC in the context of strategy 1

If we assume that V is a real-valued smooth function, then the L2(R)-
norm of the solution u to system (1.1) is conserved. If we truncate the
domain by introducing a fictitious boundary, then one can expect that
the L2(Ω)-norm of the solution is bounded by ||u0||L2(Ω). This is for
example proved in [3] in the case of the free-potential. In the case of a
general potential, the expression of the artificial boundary condition is
essential in the proof of a similar result. In particular, by adapting the
proof given in [7] using the Plancherel theorem for Laplace transform,
the following Lemma is the keypoint for proving a well-posedness result.

Lemma 3.3. Let ϕ ∈ H1/4(0, T ) be a function extended by zero for any
time s > T . Then, we have the properties <

(
eiπ/4

∫∞
0
ϕ ∂

1/2
t ϕdt

)
≥ 0

and <
(∫ +∞

0
ϕ It ϕdt

)
= 0.

This Lemma emphasizes the fact that the absorbing boundary condi-
tion must have a symmetrical form. Since our approach gives the princi-
pal symbol of an operator, an infinite choice of corresponding operators
with this principal symbol is possible. For symmetrization reasons, we
propose to fix the choice of the artificial boundary condition based on
the principal symbol λ+

1/2 = −
√
−τ and (3.14) as follows.
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Cancelling the outgoing wave corresponding to λ+
1/2 for v writes down

∂nv + iΛ+v = 0, on ΣT . (3.17)

Retaining the M first symbols {λ+
1/2−j/2}M−1≥j≥0, we consider the as-

sociated ABC

∂nuM − i(∂xV)uM + ieiV
M−1∑
j=0

Op
(
λ+

1/2−j/2

) (
e−iVuM

)
= 0, on ΣT ,

(3.18)
after replacing v in (3.17) by its expression (3.2). In Equation (3.18), uM
designates an approximation of u since we do not have a TBC. However,
uM will be denoted by u in the sequel for conciseness. We adopt the
following compact notation of (3.18)

∂nu+ ΛM` (x, t, ∂t)u = 0, on ΣT , (3.19)

where M ≥ 1 corresponds to the order of the boundary condition and
is equal to the total number of terms λ+

j/2 retained in the sum. The
subscript ` = 1 (respectively ` = 2) refers to as the choice (3.10) (re-
spectively (3.11)) of the principal symbol λ+

1/2, and therefore to the two
different strategies.

Let us begin by considering ` = 1 and M = 2. Then one directly
obtains

Λ2
1(x, t, ∂t)u = e−iπ/4eiV(x,t)∂

1/2
t (e−iV(x,t)u) (3.20)

which is a symmetrical operator. The case M = 4 is more ambiguous.
Indeed, we only have access to the principal symbol λ+

−1 = i∂xV/(4τ)
of an operator. In order to conserve a symmetrical operator for the
definition of the ABC, our choice of operator is

Op
(
λ+
−1

)
v = sg(∂nV )

√
|∂nV |
2

It

(√
|∂nV |
2

v

)
mod(OPS−3/2

S ).

(3.21)
In the above equation, sg(·) designates the sign function.

We finally obtain the following Proposition.

Proposition 3.4. For ` = 1, the ABC of order M is given by

∂nu+ ΛM1 u = 0, on ΣT , (3.22)

with
Λ2

1(x, t, ∂t)u = e−iπ/4eiV(x,t)∂
1/2
t

(
e−iV(x,t)u

)
(3.23)
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and

Λ4
1(x, t, ∂t)u = Λ2

1(x, t, ∂t)u

+i sg(∂nV )

√
|∂nV |
2

eiV(x,t)It

(√
|∂nV |
2

e−iV(x,t)u

)
.

(3.24)

The boundary condition (3.22) is referred to as ABCM1 in the sequel.

Considering the ABCs (3.22) of Proposition 3.4, we get the following
well-posedness result (see proof in [5]).

Proposition 3.5. Let u0 ∈ L2(Ω) be a compactly supported initial da-
tum such that Supp(u0) ⊂ Ω. Let V ∈ C∞(R× R+,R) be a real-valued
potential. Let us denote by u a solution of the initial boundary value
problem 

i∂tu+ ∂2
xu+ V u = 0, in ΩT ,

∂nu+ ΛM1 u = 0, on ΣT ,
u(x, 0) = u0(x), ∀x ∈ Ω,

(3.25)

where the operators ΛM1 , M = 2, 4, are defined in Proposition 3.4. Then,
u fulfils the following energy bound

∀t > 0, ||u(t)||L2(Ω) ≤ ||u0||L2(Ω), (3.26)

for M = 2. Moreover, if sg(∂nV ) is constant on ΣT , then the inequality
(3.26) holds for M = 4. In particular, this implies that we have the
uniqueness of the solution u of the initial boundary value problem (3.25).

3.4 Choosing the ABC in the context of strategy 2

Let us now consider the second strategy for building the absorbing
boundary conditions ABCM2 , for M = 2 and M = 4.

Proposition 3.6. For ` = 2, the ABC of order M based on the second
strategy for symbols (3.15) is given by

∂nu+ ΛM2 u = 0, on ΣT , (3.27)

with
Λ2

2(x, t, ∂t)u = Op
(
−i
√
−τ + V

)
u (3.28)

and

Λ4
2(x, t, ∂t)u = Λ2

2(x, t, ∂t)u+
1
4
Op

(
∂xV

−τ + V

)
u. (3.29)

The boundary condition (3.27) is referred to as ABCM2 in the sequel of
the paper.
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Studying the well-posedness of the initial boundary value problem
related to the boundary condition ABCM2 (3.27)-(3.29) is more diffi-
cult than ABCM1 except for the case V (x, t) = V (x). Indeed, the well-
posedness result is trivial since ABCM2 is strictly equivalent to ABCM1 .
A direct application of Lemma 2.1 gives the following Corollary.

Corollary 3.7. If the potential V is time independent, then ABCM1 is
equivalent ABCM2 , for a fixed value of M = 2, 4, with V(x, t) = tV (x).
In particular, the well-posedness of the associated bounded initial value
problem is immediate from Proposition 3.5.

4 Semi-discretization schemes and their prop-
erties

The aim of this Section is to proceed to the semi-discretization in time
of the initial value problem

i∂tu+ ∂2
xu+ V u = 0, in ΩT ,

∂nu+ ΛM1,2u = 0, on ΣT , for M = 2 or 4,

u(·, 0) = u0, in Ω,

(4.1)

for a maximal time of computation T .
We consider an interior Crank-Nicolson scheme for the time dis-

cretization of system (4.1). The interval [0;T ] is uniformly discretized
using N intervals. Let ∆t = T/N be the time step and let us set
tn = n∆t. Furthermore, un stands for an approximation of u(tn) and
V n = V (x, tn). If V = V (x) is a time-independent potential, then
the Crank-Nicolson discretization of the Schrödinger equation is given
by i (un+1 − un)/∆t + ∂2

x(un+1 + un)/2 + V (un+1 + un)/2 = 0, for
n = 0, . . . , N − 1. If V = V (x, t), for matters of symmetry, we choose
the following time-discretization of the interior equation

i
un+1 − un

∆t
+ ∂2

x

un+1 + un

2
+
V n+1 + V n

2
un+1 + un

2
= 0. (4.2)

Let us remark that, for implementation issues, it is often useful to set
vn+1 = (un+1 + un)/2 = un+1/2, with u−1 = 0 and u0 = u0. Similarly,
we define Wn+1 = (V n+1 + V n)/2 = V n+1/2. Then, the time scheme
(4.2) reads

2i
vn+1

∆t
+ ∂2

xv
n+1 +Wn+1vn+1 = 2i

un

∆t
. (4.3)

We propose here one approximation for each kind of ABC. The ap-
proach for strategy 1 is based on semi-discrete convolutions for the frac-
tional operators involved in (4.4)–(4.5), which leads to an uncondition-
ally stable semi-discrete scheme. Considering strategy 2, we propose a
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scheme based on the approximation of the fractional operators through
the solution of auxiliary differential equations which can be solved ex-
plicitly. The evaluation is then extremely efficient but at the same time,
no stability proof is at hand.

4.1 Discrete convolutions based discretizations for
ABCM

1

We first consider the boundary conditions ABCM1 . According to Propo-
sition 3.4, we have

ABC2
1 : ∂nu+ e−iπ/4eiV∂

1/2
t

(
e−iVu

)
= 0, (4.4)

and

ABC4
1 : ∂nu+ e−iπ/4eiV∂

1/2
t

(
e−iVu

)
+i sg(∂nV )

√
|∂nV |
2

eiVIt

(√
|∂nV |
2

e−iVu

)
= 0.

(4.5)

We use the symmetrical form of ABC4
1, which is a keypoint in the case

V = V (x, t). The associated initial boundary value problem is then
i∂tu+ ∂2

xu+ V u = 0, in ΩT ,

∂nu+ ΛM1 u = 0, on ΣT , for M = 2 or 4,
u(·, 0) = u0, in Ω.

(4.6)

We will use in the sequel the following discrete convolutions approximat-
ing the continuous convolution operators.

Proposition 4.1. If {fn}n∈N is a sequence of complex numbers approxi-
mating {f(tn)}n∈N, then the approximations of ∂1/2

t f(tn), I1/2
t f(tn) and

It f(tn) with respect to the Crank-Nicolson scheme for a time step ∆t are

given by the numerical quadrature formulas ∂1/2
t f(tn) ≈

√
2

∆t

n∑
k=0

βn−kf
k,

I
1/2
t f(tn) ≈

√
∆t
2

n∑
k=0

αn−kf
k, It f(tn) ≈ ∆t

2

n∑
k=0

γn−kf
k, where the se-

quences (αn)n∈N, (βn)n∈N and (γn)n∈N are such that
(α0, α1, α2, α3, α4, α5, ...) = (1, 1,

1
2
,

1
2
,

3
8
,

3
8
, ...),

βk = (−1)kαk, ∀k ≥ 0,
(γ0, γ1, γ2, γ3, ...) = (1, 2, 2, ...).
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The weak formulation of (4.2) writes, for any test-function ψ in
H1(Ω),

2i
∆t

∫ xr

xl

(vn+1 − un)ψdx+
[
∂xv

n+1ψ
]xr
xl
−
∫ xr

xl

∂xv
n+1∂xψdx

+
∫ xr

xl

Wn+1vn+1ψdx = 0.
(4.7)

According to the interior scheme (4.2), the semi-discretization of ABC2
1

for v at time tn+1 is given by

∂nv
n+1(xl,r) = − e−iπ/4eiW

n+1

√
2

∆t

n+1∑
k=0

βn+1−ke
−iW k

vk(xl,r),

and, for ABC4
1, by

∂nv
n+1(xl,r) = −e−iπ/4eiW

n+1

√
2

∆t

n+1∑
k=0

βn+1−ke
−iW k

vk(xl,r)

−i sg(∂nWn+1)

√
|∂nWn+1|

2
eiW

n+1 ∆t
2

n+1∑
k=0

γn+1−k

√
|∂nW k|

2
e−iW

k

vk(xl,r),

(4.8)
with the notation W n+1 = (Vn+1 + Vn)/2. Then, the following Propo-
sition can be proved (see [5]).

Proposition 4.2. The semi-discrete Crank-Nicolson scheme for the ini-
tial boundary value problem (4.6) is given by

2i
vn+1 − un

∆t
+ ∂2

xv
n+1 +Wn+1 vn+1 = 0, in Ω,

∂nv
n+1 + ΛM,n+1

1 vn+1 = 0, on Σ, for M = 2 or 4,

u0 = u0, in Ω,

(4.9)

for n = 0, ..., N − 1, setting vn+1 = (un+1 + un)/2, Wn+1 = (V n+1 +
V n)/2, and where the semi-discrete operators Λ2,n+1

1 and Λ4,n+1
1 are

defined by

Λ2,n+1
1 vn+1 = e−iπ/4eiW

n+1

√
2

∆t

n+1∑
k=0

βn+1−ke
−iW k

vk, (4.10)

Λ4,n+1
1 vn+1 = Λ2,n+1

1 vn+1 (4.11)

+ i sg(∂nWn+1)

√
|∂nWn+1|

2
eiW

n+1 ∆t
2

n+1∑
k=0

γn+1−k

√
|∂nW k|

2
e−iW

k

vk.

(4.12)
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Here, W n+1 is defined by W n+1 = (Vn+1 + Vn)/2, Vn(x) being the
approximation of V(x, tn) using the trapezoidal rule (V is given by (3.1)).
Moreover, for M = 2, one has the following energy inequality

∀n ∈ {0, . . . , N}, ‖un‖L2(Ω) ≤
∥∥u0
∥∥
L2(Ω)

, (4.13)

and if sg(∂nW k) is constant, then (4.13) also holds for M = 4. This
proves the L2(Ω) stability of the scheme. Inequality (4.13) is the semi-
discrete version of (3.26) under the corresponding assumptions.

4.2 Auxiliary functions based discretizations for ABCM
2

While the previous strategy based on discrete convolution operators is
accurate and provides a stability result, it may lead to significantly long
computational times. For ABCM2 , the discretizations of the resulting
pseudodifferential operators involved is not easy to obtain. In particular,
the operators with square-root symbols cannot be expressed in terms of
fractional time operators since Lemma 2.1 cannot be applied. Let us
consider the following additional approximations which will provide a
more suitable way to discretize the ABCs.

Lemma 4.3. We have the approximations Op
(√
−τ + V

)
=
√
i∂t + V ,

mod(OPS−3/2
S ) and Op

(
∂xV

4
1

−τ+V

)
= sg(∂nV )

√
|∂nV |
2 (i∂t + V )−1

√
|∂nV |
2 ,

mod(OPS−3
S ).

Thanks to Lemma 4.3, we now define the new approximations of
ABCM2 (see Proposition 3.6)

ÃBC2
2 : ∂nu− i

√
i∂t + V u = 0, (4.14)

and

ÃBC4
2 : ∂nu− i

√
i∂t + V u+

sg(∂nV )

√
|∂nV |
2

(i∂t + V )−1

(√
|∂nV |
2

u

)
= 0.

(4.15)

Let us begin by the second-order condition (4.14). An alternative ap-
proach to discrete convolutions (which cannot be applied here) consists
in approximating the square-root operator

√
i∂t + V by using rational

functions. More specifically here, we consider the m-th order Padé ap-
proximants [18]

√
z ≈ Rm(z) = am0 +

m∑
k=1

amk z

z + dmk
=

m∑
k=0

amk −
m∑
k=1

amk d
m
k

z + dmk
, (4.16)
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where the coefficients (amk )0≤k≤m and (dmk )1≤k≤m are given by

am0 = 0 , amk =
1

m cos2
(

(2k+1)π
4m

) , dmk = tan2

(
(2k + 1)π

4m

)
.

Formally,
√
i∂t + V is approximated by

Rm(i∂t + V ) =
m∑
k=0

amk −
m∑
k=1

amk d
m
k (i∂t + V + dmk )−1. (4.17)

Applying this process to the equation (4.14), we have the new relation

∂nu− i
m∑
k=0

amk u+ i

m∑
k=1

amk d
m
k (i∂t + V + dmk )−1 u = 0, (4.18)

defining then a second-order artificial boundary condition referred to as
ABC2

2,m in the sequel. To write a suitable form of the equation in view
of an efficient numerical treatment, we classically introduce m auxiliary
functions ϕk, for 1 ≤ k ≤ m, (see Lindmann [16]) as follows

ϕk = (i∂t + V + dmk )−1
u, (4.19)

leading to the following equation

i∂tϕk + (V + dmk )ϕk = u, for 1 ≤ k ≤ m, at x = xl,r, (4.20)

with the initial condition ϕk(x, 0) = 0. The corresponding complete
local artificial boundary condition is written as a system

∂nu− i
m∑
k=0

amk u+ i

m∑
k=1

amk d
m
k ϕk = 0,

i∂tϕk + (V + dmk )ϕk = u, for 1 ≤ k ≤ m, x = xl,r,
ϕk(x, 0) = 0.

(4.21)

The semi-discretization of the interior scheme remains the same as before
(4.2), and consequently, (4.21) becomes in terms of vnk functions

∂nv
n+1 − i

m∑
k=0

amk v
n+1 + i

m∑
k=1

amk d
m
k ϕ

n+1/2
k = 0,

i
ϕn+1
k − ϕnk

∆t
+ (Wn+1 + dmk )ϕn+1/2

k = vn+1,

ϕ0
k = 0.

(4.22)

for 1 ≤ k ≤ m and x = xl,r.
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Now, let us consider the fourth-order condition ÃBC4
2 given by (4.15)

∂nu− i
√
i∂t + V u

+ sg(∂nV )

√
|∂nV |
2

(i∂t + V )−1

(√
|∂nV |
2

u

)
= 0, on Σ× R.

(4.23)
Then, one has to introduce one more additional auxiliary function ψ

such that (i∂t + V ) ψ =
√
|∂nV |
2 u.

We call ABC4
2,m the resulting approximation of ÃBC4

2. Using again
a Crank-Nicolson discretization of ψ, one gets the following approximate
representation of ABC4

1,m

∂nv
n+1 − i

m∑
k=0

amk v
n+1 + i

m∑
k=1

amk d
m
k ϕ

n+1/2
k

+ sg(∂nWn+1)

√
|∂nWn+1|

2
ψn+1/2 = 0,

i
ϕn+1
k − ϕnk

∆t
+ (Wn+1 + dmk )ϕn+1/2

k = vn+1,

i
ψn+1 − ψn

∆t
+Wn+1 ψn+1/2 =

√
|∂nWn+1|

2
vn+1,

ϕ0
k = ψ0 = 0.

(4.24)

for 1 ≤ k ≤ m and x = xl,r.

5 Extensions to nonlinear problems

Following the developments in [4] for the cubic nonlinear Schrödinger
(NLS), one can extend the derivation performed in section 3.2 to cases
in which the potential is formally replaced by a nonlinearity. To be more
precise, we consider the following cubic (NLS) equation{

i∂tu+ ∂2
xu+ q|u|2u = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ Ω. (5.1)

The role of the potential V (x, t) is now replaced by the cubic nonlinear
term q|u|2(x, t). If q > 0 (resp. q < 0), the (NLS) equation is said to
be focusing (resp. defocusing). This equation is well posed and has spe-
cial solutions when dispersion and nonlinearity compensate, namely the
soliton solution, which exhibits the specific behavior to propagate with-
out modification of its amplitude. The cubic NLS equation is extremely
interesting since it is the prototype of more general nonlinear dispersive
equations and therefore it has received many attentions among the years.
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In the context of TBCs and ABCs, contributions can be found in the
papers [4, 24, 26, 6].

If we formally replace the potential by the nonlinearity q|u|2, the two
strategies developped in the previous sections lead respectively to two
different ABCs of order M that will be denoted by NLABCM1 for the

first strategy and NLÃBC
M

2 -NLABCM2,m for strategy 2. For strategy 1,
the ABCs of order M are given by

∂nu+ ΥM
1 u = 0, on ΣT , (5.2)

with (NLABC2
1)

Υ2
1 u = e−iπ/4eiV(x,t)∂

1/2
t

(
e−iV(x,t)u

)
and (NLABC4

1)

Υ4
1 u = Υ2

1 u+i sg(∂nq|u|2)

√
|∂nq|u|2|

2
eiV(x,t)It

(√
|∂nq|u|2|

2
e−iV(x,t)u

)
,

setting V(x, t) =
∫ t

0
q|u|2(x, s) ds.

For the second strategy, one gets NLÃBC2
2: ∂nu−i

√
i∂t + q|u|2u = 0

and NLÃBC4
2:

∂nu− i
√
i∂t + q|u|2u

+ sg(∂nq|u|2)

√
|∂nq|u|2|

2
(i∂t + q|u|2)−1

(√
|∂nq|u|2|

2
u

)
= 0.

The numerical treatment is slightly different from the linear Schrö-
dinger equation with potential. Indeed, the semi-discrete approxima-
tion of the nonlinear term q|u|2u is done following the Durán and Sanz-
Serna scheme [12]. More precisely, we use the midpoint approxima-
tion q|(un+1 + un)/2|2(un+1 + un)/2. This differs from q(|un+1|2 +
|un|2)(un+1 + un)/4 which is the classical Crank-Nicolson approxima-
tion and corresponds to Eq. (4.2). Therefore, the semi-discrete time
scheme reads

i
un+1 − un

∆t
+ ∂2

x

un+1 + un

2
+ q

∣∣∣∣un+1 + un

2

∣∣∣∣2 un+1 + un

2
= 0

which can be recast as follows

2i
vn+1

∆t
+ ∂2

xv
n+1 + q|vn+1|2vn+1 = 2i

un

∆t
, (5.3)

where vn+1 denotes the midpoint term (un+1 +un)/2. Since this scheme
is now nonlinear, we solve it by a fixed-point procedure with error tol-
erance ε. The algorithm is described below:
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let ζ0 = vn, s = 0
repeat

solve the linear elliptic problem

2i ζ
s+1

∆t + ∂2
xζ
s+1 = 2iu

n

∆t − q|ζ
s|2ζs

s = s+ 1
until ‖ζs+1 − ζs‖L2(Ω) ≤ ε
vn+1 = ζs+1, un+1 = 2vn+1 − un

The rule is to replace vn+1 by ζs+1 if the corresponding term is linear
and by ζs if one deals with a nonlinear one. We do not detail this step
further and this principle is also applied to the numerical treatment of
other nonlinear ABCs.

The numerical approximation of NLABC4
1 is

∂nζ
s+1 + e−i

π
4

√
2

∆t
ζs+1 = gs on ΣT , (5.4)

with

gs = −e−iπ4
√

2
∆t

(
Ẽn exp

(
iq∆t

|ζs|2

2

)
n∑
k=1

βn+1−kEkvk
)

−i q
4
∂n(|ζs|2)

(
∆t
2
ζs + ∆tẼn exp

(
iq∆t

|ζs|2

2

)
n∑
k=1

Ekvk
)
.

The notations Ep and Ẽp−1 are the quantities defined by

Ep = exp(iUp) = exp

(
iq∆t

p−1∑
l=1

∣∣ul∣∣2) exp
(
iq

∆t
2
|up|2

)
= Ẽp−1 exp

(
iq

∆t
2
|up|2

)
,

(5.5)

setting E0 = 1 and E1 = exp (iU1).
The Crank-Nicolson scheme (5.3) coupled to (5.4) remains nonlocal

in time since we have to deal with convolution terms. In this direction,
NLABCM2,m are computationally more efficient since they are based on
the Padé approximants and are therefore local in time. For example,
NLABC4

2,m reads

∂nζ
s+1 = i

m∑
k=0

amk ζ
s+1 − i

m∑
k=1

amk d
m
k

(
φsk + ϕnk

2

)
− sg(∂nq|ζs|2)

√
|∂nq|ζs|2|

2

(
χs + ψn

2

)
,

(5.6)
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with

φsk =
(
i

∆t
+ q
|ζs|2

2
+
dmk
2

)−1(
ζs + ϕnk

(
i

∆t
− q |ζ

s|2

2
− dmk

2

))
,

where ϕ0
k = 0, ∀k, φ0

k = ϕnk and

χs =
(
i

∆t
+ q
|ζs|2

2

)−1
(√
|∂nq|ζs|2|

2
ζs +

(
i

∆t
− q |ζ

s|2

2

)
ψn

)

where ψ0 = 0 and χ0 = ψn. When the convergence assumption

‖ζs+1 − ζs‖L2 ≤ ε

is reached, one affects ϕn+1
k = φsk and ψn+1 = χs.

6 Numerical examples

The aim of this section is to provide some test cases to validate our ap-
proach. We perform some experiments for Schrödinger equations with
both variable potentials and nonlinearities. For each situation, we use a
variational formulation of the semi-discrete time problem with nh linear
finite elements (with spatial size h) and integrate the ABCs in the cor-
responding scheme as a Fourier-Robin boundary condition. This leads
to a tridiagonal banded matrix. The solution to the associated linear
system is then simple and is realized by a direct LU solver.

6.1 Linear Schrödinger equation with variable po-
tential

We consider the initial gaussian datum u0(x) = eik0x−x
2
, where k0 desig-

nates the wave number fixed to k0 = 10 in our simulations. This choice,
like for the nonlinear Schrödinger equation, is related to the fact that
our ABCs are derived under a high frequency hypothesis. We present
here one kind of potential: V (x, t) = 5xt (more examples are available
in [5]). The computational domain is Ω =] − 5; 10[. The final time of
computation is T = 2.5. The spatial step size is h = 2.5 × 10−3 for the
linear finite element method and the time step is ∆t = 10−4. We present
in Figure 6.1 the quantity log10(|u(x, t)|) in the domain ΩT . We begin by
reporting the reference solution (top left) computed on a larger domain
to avoid any effect related to spurious reflection at the boundary. Next,
we present (top) the solutions using ABC2

1 and ABC4
1 which show that

increasing the order of the boundary conditions yields smaller undesired
back reflections. Finally, we compare the effect of the localization based
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on the Padé approximation of order m for the second-order ABC and
strategy 2. We choose m = 20 (ABC2

2,20) and m = 50 (ABC2
2,50) terms.

To get an equivalent precision to ABC2
1, m = 50 is required. However,

we note here that this leads to a negligible additional cost compared
to m = 20. We also see on the right bottom picture that the preci-
sion of ABC4

2 is conserved for ABC4
2,50. All these simulations show that

the proposed ABCs have increasing accuracy according to the order M ,
with similar accuracy for the same order when a localization process is
applied.
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Figure 6.1: log10 representation of the amplitude of the computed solutions for
V (x, t) = 5xt. From left to right, top: reference solution, ABC2

1, ABC4
1; bottom:

ABC2
2,20, ABC2

2,50, ABC4
2,50.

6.2 Nonlinear Schrödinger equation

The one-dimensional cubic nonlinear Schrödinger equation is integrable
by using the inverse scattering theory [25]. This approach yields the
so-called exact soliton solution given by

uex(x, t) =
√

2a
q

sech(
√
a(x− ct)) exp(i

c

2
(x− ct)) exp(i(a+

c2

4
)t).

From now on, we fix the focusing parameter q to 1. The real parameter
a, equals to 2 here, characterizes the amplitude of the wavefield. Finally,
c is the velocity of the soliton. Like in the previous subsection, since
the derivation of the nonlinear artificial boundary conditions has been
constructed under a high-frequency assumption (|τ | large), we take c =
15. All along the computations, we consider ε = 10−6 in the fixed-
point algorithm. The numerical parameters are ∆t = 10−3 for a final
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time T = 2. The finite computational spatial domain is Ω =] − 10, 10[
discretized with nh = 4000 equally spaced points (h = 0.5 × 10−2).
Concerning the Padé approximation, we choose m = 50 since this is an
optimal choice for the potential test cases.

To focus on the spurious reflections link to the different methods,
we plot the contour of log10(|u|) on Figures 6.2-6.6. We see on Fig.
6.2 that the maximal reflection is approximately equal to 10−2 for an
initial amplitude of 2 and the linear TBC (2.2). For Figures 6.3-6.6,
the reflection attains a maximal value around 5 × 10−3. The reflection
occurring at the right boundary decreases according to the order M of
the different conditions NLABCM1 or NLABCM2,m. Moreover, the most
accurate results are obtained for the condition NLABC2

4 with a minimal
region of maximal reflection. Unlike the linear TBC, the reflection at
the left boundary has an amplitude smaller than 10−4.
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Figure 6.2: Contour plot
of log10(|u|) for the linear
TBC (2.2).

Figure 6.3: Contour plot
for the boundary condi-
tion NLABC2

1.
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Figure 6.4: Contour plot
for the boundary condi-
tion NLABC4
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Figure 6.5: Contour plot
for the boundary condi-
tion NLABC2

2,50.
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Figure 6.6: Contour plot
for the boundary condi-
tion NLABC4

2,50.

To precise these results, we plot on figure 6.7 the relative error for
the L2(Ω)-norm

‖uex − unum‖L2(Ω)

‖unum‖L2(Ω)
,

where unum denotes the numerical solution. For the linear TBC, the
error is about 2% whereas the best result is obtained for the NLABC4

1
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condition for a final error of 0.2%. It is interesting to note that the ABCs
NLABCM2 with Padé approximations are very competitive. The relative
error for NLABC2

2 and NLABC2
2,50 are exactly the same, and NLABC4

2,50

is between NLABC2
2 and NLABC4

2 methods, the main difference is that
methods based on Padé approximations are local in time and easy to
implement. However, the fact that NLABC4

2 and NLABC4
2,m are not

numerically equivalent requires further investigations. Indeed, for the
variable potential cases, we obtained similar results while it is no longer
the case here.
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Figure 6.7: Relative error for the different linear and nonlinear ABCs.

7 Conclusion

We have introduced various constructions of Absorbing Boundary Con-
ditions (ABCs) for the one-dimensional Schrödinger equation with time-
and space-variable repulsive potentials and for the one-dimensional non-
linear cubic Schrödinger equation. They are derived with the help of gen-
eral pseudodifferential techniques and applied to variable potentials and
nonlinear equations. New accurate and efficient Absorbing Boundary
Conditions for the nonlinear cubic Schrödinger equation are proposed.
Numerical examples compare the different ABCs of various orders, show-
ing that fourth-order ABCs yield accurate computations, and that Padé
based approximations are accurate while they are also efficient. Further
studies will include other nonlinearities as well as extensions to higher
dimensions.
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