
Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Lehrstuhl für Angewandte Mathematik
und Numerische Mathematik

Lehrstuhl für Optimierung und Approximation

Preprint BUW-AMNA-OPAP 10/04

Xavier Antoine, Christophe Besse, Matthias Ehrhardt
and Pauline Klein

Modeling boundary conditions for solving

stationary Schrödinger equations

February 2010

http://www.math.uni-wuppertal.de



Modeling boundary conditions for solving stationary

Schrödinger equations

Xavier Antoinea,1,∗, Christophe Besseb,1, Matthias Ehrhardtc, Pauline
Kleina,1

aInstitut Elie Cartan Nancy, Nancy-Université, CNRS UMR 7502, INRIA CORIDA
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Abstract

Using pseudodifferential calculus and factorization theorems we construct a
hierarchy of novel absorbing boundary conditions for the stationary Schrö-
dinger equation with general (linear and nonlinear) potential. Doing so, we
generalize the well-known quantum transmitting boundary condition of Kirk
and Lentner to the case of space-dependent potential. Moreover, we propose
a rapidly converging iterative method based on finite elements suitable for
computing scattering solutions and bound states. The accuracy of our new
absorbing boundary conditions is investigated numerically for two different
situations. The first problem is related to the computation of linear scattering
problems. The second application concerns the computation of energies and
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ground-states for linear and nonlinear Schrödinger equations. It turns out
that these absorbing boundary conditions and their variants lead to a higher
accuracy than the usual Dirichlet boundary condition. Finally, our approach
also offers the possibility to construct ABCs for higher dimensional problems.

Keywords: Absorbing boundary conditions, stationary Schrödinger
equations, unbounded domain, spatially dependent potential
PACS: 03.65.-w, 42.82.Et, 43.30.Ma
2000 MSC: 35J10, 65M60, 65N30

1. Introduction

The solution of the Schrödinger equation occurs in many applications
in physics, chemistry and engineering (e.g. quantum transport, condensed
matter physics, quantum chemistry, optics, underwater acoustics, . . . ). The
considered problem can appear in different forms: time-dependent or sta-
tionary equation, linear or nonlinear equation, inclusion of a variable poten-
tial among others. One of the main difficulty when solving the Schrödinger
equation, and most particularly from a numerical point of view, is to impose
suitable and physically admissible boundary conditions to solve numerically
a bounded domain equation modeling an equation originally posed on an un-
bounded domain. Concerning the time-domain problem, many efforts have
been achieved these last years. We refer the interested reader e.g. to the
recent review paper [1] and the references therein for further details.

In this paper, we focus on the solution to the stationary Schrödinger
equation. For a given potential V , eventually nonlinear (V := V (x,ϕ), we
want to solve the following equation

(
−α

d2

dx2
+ V

)
ϕ = Eϕ, x ∈ R, (1)

or rewritten as
(

d2

dx2
+

1

α

[
E − V

])
ϕ = 0, x ∈ R, (2)

with some parameter α that allows for some flexibility. More precisely, we
study the extension of the recently derived time-domain boundary conditions
[2] to the following two situations:
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• linear and nonlinear scattering: E is a given value and the poten-
tial V being linear (independent of ϕ) or nonlinear, we want to compute
ϕ as the solution of (1).

• stationary states: we determine here the pair (ϕ, E), for a given
linear or nonlinear potential V . This eigenvalue problem is also known
as the computation of ground states. The energy of the system is then
the eigenvalue E and the associated stationary state is the eigenfunction
ϕ. In particular, we seek the fundamental stationary state which is
linked to the smallest eigenvalue. In practice, higher order states are
also of interest.

For the stationary Schrödinger equation (2), boundary conditions for solving
linear scattering problems with a constant potential outside a finite domain
have been proposed e.g. by Ben Abdallah, Degond and Markowich [3], by
Arnold [4] for a fully discrete Schrödinger equation and in a two-dimensional
quantum waveguide by Lent and Kirkner [5, 6]. The case of bound states
can be found for specific one-dimensional linear Schrödinger equations in
[7, 8, 9, 10, 11]. These boundary conditions are needed e.g. to improve
existing simulation tools for semiconductors that allows to investigate certain
stationary (and also transient) behavior of the devices, like conductance,
capacity, current-voltage curves. Often the physical relevant effects take place
only in a small subregion of the device, and the novel absorbing boundary
conditions offer the possibility to confine the computations to this small
domain. We refer the reader to [12, 13, 14, 15] for more application details.

The goal of this work is to propose and validate some new boundary
conditions for modeling linear and nonlinear variable potentials stationary
one-dimensional Schrödinger equations with application to scattering and
ground-state computation. We provide the whole theory which is related to
previous developments [2] as well as numerical schemes for their validation.
Finally, let us point out that these absorbing boundary conditions can be
extended to higher dimensional problems and other situations like variable
mass problems [16, 17, 18].

The paper is organized as follows. In Section 2, we explain how to obtain
the stationary boundary conditions from the time-dependent case. Then, in
Section 3, we investigate numerically these absorbing boundary conditions
in the case of linear scattering problems. Section 4 and 5 are respectively
devoted to their applications to linear and nonlinear eigenstate computation
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with applications to many possible given variable potentials and nonlineari-
ties. Finally, Section 6 draws a conclusion and give an outlook for possible
future research directions.

2. Absorbing boundary conditions: from the time-domain to the
stationary case

In order to derive some absorbing boundary conditions (ABCs) for the
stationary Schrödinger equation (2), let us first start with the time-domain
situation. In case of the time-dependent Schrödinger equation with a linear
or nonlinear potential Ṽ

{
i∂tu + ∂2

xu + Ṽ u = 0, ∀(x, t) ∈ R × R+,

u(x, 0) = u0(x), x ∈ R,
(3)

the following second- and fourth-order ABCs on the boundary Σ × R+

ABC2
2: ∂nu = i Op

(√
−τ + Ṽ

)
u, (4)

ABC4
2: ∂nu = i Op

(√
−τ + Ṽ

)
u −

1

4
Op

(
∂nṼ

−τ + Ṽ

)

u, (5)

were derived recently in [2]. Here, Op denotes a pseudodifferential operator
and the fictitious boundary Σ is located at the two interval endpoints x! and
xr. The outwardly directed unit normal vector to the bounded computational
domain Ω =]x!; xr[ is denoted by n.

To obtain some ABCs for the stationary equations (1) or (2), we consider
these equations supplied with a new potential: Ṽ := −V/α. Moreover, we
are seeking some time-harmonic solutions u(x, t) := ϕ(x)e−i E

α
t and since

i∂tu =
E

α
ϕ(x) e−i E

α
t,

the variable −τ can be identified with E/α. These considerations yield some
stationary ABCs that we designate by SABCM (’S’ stands for stationary and
M denotes the order of the boundary condition) :

SABC2: ∂nϕ = i
1√
α

√
E − V ϕ, on Σ, (6)

SABC4: ∂nϕ = i
1√
α

√
E − V ϕ+

1

4

∂nV

E − V
ϕ, on Σ. (7)
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The second- and fourth-order ABCs for the time-dependent Schrödinger
equation (4), (5) were developed under a high frequency assumption τ & 1
[2]. This relation can be translated to the stationary case in terms of links
between E and V . The new relations will be given for the different scattering
or eigenvalues problems in the next dedicated sections.

Remark 1. For the time-dependent case [2], we constructed two families
of ABCs, denoted by ABCM

1 and ABCM
2 . These ABCs all coincide if the

potential is time-independent. In the stationary case, all the potentials fall
into this category and thus the ABCs are equivalent. Hence, we get the
unique class of stationary ABCs, SABCM (without subscript index). For
convenience, the form of the boundary conditions (6)–(7) is based on ABCM

2

(we refer to [2] for more technical details).

3. Application to linear scattering problems

3.1. Problem formulation and finite element approximation
Let us consider an incident right-traveling plane wave

ϕinc(x) = eikx, k > 0, x ∈] −∞; x!], (8)

coming from −∞. The parameter k is the real valued positive wave number
and the variable potential V in (1) models an inhomogeneous medium. We
consider a bounded computational domain Ω =]x!; xr[ and assume that the
scattered wave ϕ − ϕinc is perfectly reflected back at the left endpoint x!.
Furthermore, we assume that the total wave is transmitted in [xr;∞[, prop-
agating then towards +∞. As a consequence, we have to solve the following
boundary value problem

(
−α

d2

dx2
+ V

)
ϕ = Eϕ, for x ∈ Ω,

∂nϕ = gM,!ϕ+ fM,!, at x = x!,

∂nϕ = gM,rϕ, at x = xr,

(9)

with fM,! = ∂nϕinc(x!) − gM,!ϕinc(x!). Here, the order M is equal to 2 or 4
according to the choice of SABCM (6) or (7) and thus we have

g2,(!,r) := i
1√
α

√
E − V!,r, (10)

g4,(!,r) := g2,(!,r) +
1

4

∂nV|x=x",r

E − V|x=x",r

. (11)
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In the sequel of this paper, we will also use the following other concise writing

∂nϕ = gMϕ+ fM , on Σ, (12)

for each function being adapted with respect to the endpoint. Finally, for a
plane wave, we have the dispersion relation: E = αk2+V!, where V! = V (x!).

In the sequel all the potentials are supposed to be smooth, at least in the
two unbounded exterior domains ]−∞; x!] and [xr;∞[, which is compatible
with the theory of pseudodifferential operators [19]. Furthermore, to com-
pute a numerical reference solution, we assume that the potentials are either
constant outside a large reference domain or numerically zero outside this
domain.

We use a finite element method (FEM) to solve numerically this prob-
lem. One benefit of using FEM in this application is that the ABCs can be
incorporated directly into the variational formulation. The interval [x!; xr]
is decomposed into nh elementary uniform segments of size h. Classically,
the ABCs are considered as (impedance) Fourier-Robin boundary conditions.
Let ϕ ∈ Cnh+1 denote the vector of nodal values of the P1 interpolation of
ϕ and let S ∈ Mnh+1(R) the P1 stiffness matrix associated with the bilinear
form ∫

Ω

∂xϕ∂xψ dx.

Next we introduce MV −E ∈ Mnh+1(R) as the generalized mass matrix arising
from the linear approximation of

∫

Ω

(V − E)ϕψ dx,

for any test-function ψ ∈ H1(Ω). Let BM ∈ Mnh+1(C) be the matrix of the
boundary terms related to the ABC SABCM

BM =





αgM,! 0 0 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 0 0 αgM,r




. (13)
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The right-hand side vector bM ∈ Cnh+1 is given by

b =





αfM,!

0
...
0




. (14)

Finally, the linear system reads

(αS + MV −E + BM)ϕ = bM , (15)

which is solved by a LU method.

3.2. Numerical results

3.2.1. The case of a Gaussian potential
We study the stationary Schrödinger equation (1) with α = 1/2:

−
1

2

d2

dx2
ϕ+ V ϕ = Eϕ, x ∈ R, (16)

and consider an incident right-traveling plane wave with wave number k = 10.
We first analyze the numerical results for a Gaussian potential

V (x) = A e−
(x−xc)2

w2 , (17)

centered at xc = 20 with the amplitude A = −5 and the parameter w = 3 (see
Figure 1). The choice of these parameters insures that V (0) is sufficiently
small such that the classical transparent boundary condition [3, 4] can be
applied to the left boundary.

The numerical reference solution is computed on the large domain ]0; 60[
using the fourth-order ABC. At the fictitious boundary points x! and xr of
the computational domain, the values of the potential are V (60) ≈ 10−77

and V (0) ≈ 10−19, i.e. from a numerical point of view, the potential can be
considered as compactly supported in this reference domain. Then, the ABCs
are highly accurate [1] yielding a suitable reference solution ϕref with spatial
step size h = 5 · 10−3. Let us remark here that the case of non-compactly
supported initial data was treated in [20].

We next compute the solution obtained by applying the ABCs on a
smaller computational domain by shifting the right endpoint to xr = 18,
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Figure 1: Gaussian potential V (x) = −5e−(x−20)2/9.
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Figure 2: Real parts of the numerical solutions.

now the potential being far from vanishing at this endpoint. In the negative
half-space x < x! = 0, the potential is almost equal to zero and hence the
second-order ABC is very accurate. Note that this latter condition will be
always used at the left endpoint and we only analyze the effect of the ABC
on the right fictitious endpoint xr. We keep the step size h = 5 · 10−3 as for
the reference solution. Figure 2 shows the computed solutions (denoted by
ϕnum), superposed on the potential and reference solution, with the second-
order (green) and fourth-order (cyan) ABCs placed at the right endpoint xr.
Since the solutions are complex valued, we only plot here their real parts.
Note that we would obtain roughly the same curves for their complex parts.
The ABCs give quite good results as it can be clearly observed in Figure 2(b)
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where we zoom around the boundary xr = 18 to distinguish the different
curves. At first sight, the curves coincide. Next we plot in Figure 3(a) the
error curves on the real part x )→ |Re(∆ϕ(x))| and in Figure 3(b) we show
the modulus x )→ |∆ϕ(x)|, with the error ∆ϕ = ϕnum−ϕref . We can see that
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(a) Error on the real part
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Figure 3: Errors |ϕnum − ϕref | for the potential V (x) = −5e−(x−20)2/9.

the approximation error by using the SABC2 is roughly 5 · 10−4 while the
error associated with ABC4 is almost 10−6, which is also the linear finite ele-
ment approximation error h2 ≈ 10−6. Hence, not only the results are precise
but they are also of increasing accuracy as the order of the SABC increases.

The amplitude and phase of the solution are modified depending on the
chosen potential. To analyze this point, we consider an incident plane wave
ϕinc(x) = eikx with the wave number k = 8 and the potential

V (x) = A e−
(x−20)2

9 ,

where the amplitude A will vary. The Figure 4 shows the potential as well as
the reference solution, where the potential amplitude is set to A = −50. In
Figure 4(a) we observe on the real part an attenuation of the wave amplitude
in the zone where the potential is numerically not zero. We also notice
stronger oscillations in this zone, see Figure 4(b). Figure 5 shows some
analogous results for A = 20. For this case we observe in Figure 5(a) that
the amplitude of the wave increases and that its frequency decreases, see
Figure 5(b).

We next study the evolution of the error related to the wave number
k. Since the ABCs are developed under a high frequency assumption [2],
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Figure 4: Modification of the frequency of the wave field when passing through the poten-
tial according to the amplitude of V (V (x) = −50 e−(x−20)2/9 and wave number k = 8).

we should observe a gain of accuracy for large values of k. To check it, we
compute the maximum of the error in the computational domain [0;xr] as a
function of the wave number k. Indeed, we clearly recognize that the error
curves have always the same behaviour, they are periodic with an error peak
corresponding to the extrema of the solution. Therefore, the error is suitably
described by maxx∈[0;xr] |∆ϕ(x)|. We report in Figure 6 the results for the
ABCs of orders two and four depending on k.

In Figure 6(a) we first observe that the error decays for increasing wave
number k and that SABC4 is more accurate than SABC2 for a wave amplitude
A = 1. We also remark a loss of accuracy of the ABCs when k grows (about
k = 8). The two ABCs lead to the same accuracy which is not a priori
compatible with the high frequency assumption. However, the deterioration
is not due to the ABCs but to the finite element method which suffers from
the so-called pollution error for high wave numbers [21]. To confirm this
hypothesis, we refine the mesh size by a factor 10: h = 5 · 10−4, and report
the results in Figure 6(b) showing that the ABCs give a precision increasing
with their respective order between k = 8 and k = 20. Figure 7 shows the
same results as Figure 6 but for a potential amplitude equal to A = −5
(instead of A = 1), the conclusion being the same.

Let us now answer the question: Where can we place the fictitious bound-
ary for a given problem? To this end, we perform a couple of experiments
for the Gaussian potential (17) centered at xc = 20 with w = 3 and a varying
amplitude A. For a fixed value of k, we let xr vary. We observe that the
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Figure 5: Modification of the frequency of the wave field when passing through the poten-
tial according to the amplitude of V (V (x) = 20 e−(x−20)2/9 and k = 8).

error depends on the amplitude of the potential A (see for example Fig. 11).
If A is negative, then xr can be placed both at the right or left of the center
of the Gaussian xc. When the amplitude A is positive, we observe the same
kind of situation but only if A is not too large otherwise the results are com-
pletely incorrect if xr ≤ xc and become accurate when xr is larger than xc.
A similar conclusion can be made if xr is chosen to be smaller than xc but
for a variable wave number k. We observe in Figures 8(a), 9(a) and 9(b) that
there exists limit values of the amplitude A (respectively 50, 32 and 72) that
lead to a bad behavior of the ABCs. Hence, we conjecture that there exists
a critical value of A which is related to k, xr and xc. Let us fix the wave
number k = 10 and the right fictitious boundary xr = 18 (cf. Figure 10), i.e.
we are in the situation xr < xc since xc = 20. To explain these remarks, let
us recall that the dispersion relation connecting the energy E = E(k) to the
wave number k is

E =
k2

2
+ V!. (18)

We replace E in equation (16) by the above expression to obtain

−
1

2
ϕ′′ + V ϕ =

k2

2
ϕ+ V!ϕ,

i.e.
ϕ′′ +

[
k2 − 2(V − V!)

]
ϕ = 0.
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Figure 6: Evolution of the error as a function of k and for two spatial steps (A = 1).

For the Gaussian potential case with suitable chosen parameters xc and w,
V! = V (0) is numerically almost zero (for A = 1, xc = 20 and w = 3), the
value of the potential is 10−20 at x! = 0), thus we have to solve numerically
the equation

ϕ′′ +
(
k2 − 2V

)
ϕ = 0. (19)

The properties of the solution to (19) strongly depend on the sign of k2−2V .
This term can be regarded as a new (variable) wave number k̃2 which must
be positive on [xr; +∞[ to obtain an accurate ABC, i.e. the minimum of this
term must be positive, which yields the condition

max
x∈[xr;+∞[

V (x) ≤
k2

2
. (20)

This relation (20) involves three parameters: k, A and xr. For a given wave
number k, fixing A imposes that xr is large enough and on the other hand,
fixing xr requires that A is not too large. More precisely, the maximum of V
on [xr; +∞[ is






max
x∈[xr;+∞[

V (x) = V (xc) = A, if xr < xc,

max
x∈[xr;+∞[

V (x) = V (xr), if xr ≥ xc.
(21)

We then have two cases. In the first case, k and A satisfy the relation

A ≤
k2

2
. (22)
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Figure 7: Evolution of the error according to k and for two spatial steps (A = −5).

Hence, whatever the value of xr is, the relation (20) is always fulfilled and xr

can be placed freely according to xc. In the second situation, relation (22) is
not always fulfilled. Indeed, the three parameters must verify

A exp

(
−

(xr − xc)2

w2

)
≤

k2

2
, (23)

which lead to choose xr larger than xc. More precisely, an approximate
minimal value xmin

r of xr is

xmin
r ≈ xc + w

√

ln

(
2A

k2

)
. (24)

Remark 2. The condition ensuring that k̃2 = k2−2(V −V!) remains positive
on [xr; +∞[ is the same as having well-defined ABCs. Indeed, writing k2 =
2(E − V!), we get

k2 − 2(V − V!) ≥ 0 ⇔ 2(E − V!) − 2(V − V!) ≥ 0

⇔ E − V ≥ 0.

Then, in the second- and fourth-order ABCs, (6) and (7), we have E−Vr ≥ 0
and

√
E − Vr is well-defined.

In the example of the Gaussian potential and for k = 10, the critical
amplitude from (22) to have no constraint on xr is A = 50. To prove this
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Figure 8: Evolution of the error with respect to the amplitude A (k = 10).

numerically, we compute the error |∆ϕ| associated with each boundary con-
dition as a function of A for some values in ] − 30; 80[. In Figure 8(a),
for xr = 18 and xc = 20, we remark that the results are accurate and the
accuracy of the ABCs is related to their order M , until A = 40. When ap-
proaching the critical value A = 50, the error grows and then yields wrong
results. We perform a similar test in Figure 8(b) but fixing now xr = 22,
(cf. Figure 10). We now observe that we do not have any restriction on the
amplitude and that the results are always accurate.

In the series of curves in Figure 11, we present the error |∆ϕ| for a
potential centered at xc = 20 with a given amplitude A (-20, 30, 50, 60)
and k = 10 depending on the location of the right endpoint xr. For the two
first Figures 11(a) and (b) (A = −20 and A = 30), we are in a configuration
where 2A < k2. We observe a high accuracy of our results which is due to
the fact that there is no a priori restriction on the location xr. Figure 11(c)
concerns the limit case when 2A = k2. According to (24), the results are
correct for xr ≥ xmin

r = 20. Finally, the last figure corresponds to 2A > k2

and is globally coherent with the condition (24). Choosing xr < xc does
not yield accurate results which was predictable according to the previous
analysis. A little bit more surprising is that the results become more accurate
when xr > xc even if the theoretical value for A = 60 is xmin

r ≈ 21.3. However,
we clearly observe a great accuracy improvement after xr = 21. In particular,
we remark the difference in the accuracy between the ABCs of order two and
four after this value, the fourth-order ABC being the most accurate one.
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Figure 9: Evolution of the error with respect to the amplitude A for various values of k.
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Figure 10: Gaussian potential and placement of the fictitious boundary (A = 1).

3.2.2. The case of a double Gaussian potential
To complete the previous study, we analyze now the case where the po-

tential is the sum of two Gaussian potentials in the reference domain ]0; 50[

V (x) = A1 exp

(
−

(x − xc1)
2

w2
1

)
+ A2 exp

(
−

(x − xc2)
2

w2
2

)
. (25)

To start with we fix the parameters

xc1 = 24, xc2 = 34, w1 = 5, w2 = 4, (26)

and let the amplitudes A1 and A2 vary. In the whole section we use the wave
number k = 10 and the step size h = 5 · 10−3.
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Figure 11: Evolution of the error according to xr (A is fixed, k = 10 and xc = 20).

Figure 12 presents the results for this potential. We place the right end-
point xr = 26 and plot the resulting error on the real part in Figure 12(b).
The ABCs perform well even if the fictitious boundary is in the middle of
the potential. Again, we observe the hierarchy between the ABCs.

Figure 13 proposes another situation for the double Gaussian potential
with a step between the two Gaussians and xr = 15 located in this gap. In
this example, the solutions computed with the ABCs are very accurate with
an error (in infinite norm) less than 10−4. The errors for both ABCs are the
same here since xr is placed between the two Gaussians, where the potential
is flat. As a consequence, its derivative is almost equal to zero at this point:
∂xV (15) ≈ 10−3, leading numerically to the same precision of both boundary
conditions.
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Figure 12: Double Gaussian potential: V (x) = 20 e−
(x−24)2

25 + 30e−
(x−34)2

16 .

3.2.3. Other potentials: partially quadratic, double barrier with quadratic
part

The first potential is a quadratic potential defined on [0; 20] by

V (x) =

{
2 + (x − 8)2, for x ∈ [0; 8],

2, for x ∈]8; 20].
(27)

Figure 14 shows the results for xr = 3 and step size h = 5 · 10−3. Since the
potential is constant outside [0; 8], we can compute a reference solution by
applying an exact ABC, a so-called transparent boundary condition (TBC)
[1] on x! and xr. The second-order ABC gives an error of about 5 · 10−3 and
the fourth-order ABC an error equal to 10−4.

The last potential, illustrated in Figure 15, is a double barrier potential
with a quadratic part given by the analytic expression

V (x) =






35/2, x ≤ 15

25 − x/2, 15 ≤ x ≤ 20 et 23 ≤ x ≤ 26

29 − x/2, 20 ≤ x ≤ 23 et 26 ≤ x ≤ 29

21/2 + ((x − 38)2 − (29 − 38)2) /20, 29 ≤ x ≤ 38

21/2 − (29 − 38)2/20, x ≥ 38.
(28)

Here, the basic difference to the potential (25) is the presence of disconti-
nuities in the computational domain. As a consequence, the fictitious point
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Figure 13: Double Gaussian potential: V (x) = 50 e−
(x−7)2

4 + 40 e−
(x−30)2

25 . The bottom
figures present the error on the real and imaginary parts for each ABC.

xr cannot be placed between the two barriers (at xr = 24 or xr = 27 for
example). So, we have to choose the right end point xr between 29 and 38
(after 38, the potential is constant and the ABCs are exact). We decide to
fix here xr = 31 in this example. As we can see, the error with SABC4 is
slightly better than with SABC2 which is already less than 10−4.
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Figure 14: Quadratic potential (xr = 3). The bottom figures present the error in the real
and imaginary parts for each condition.

4. Application to the computation of stationary states: the linear
case

The second problem for testing the ABCs is the following. Let us consider
the Hamiltonian H

H = −α
d2

dx2
+ V (x), x ∈ R, (29)

defined through α and V . The task here is to determine the pair (φE, E)
solution to the eigenvalue problem

HφE = EφE, x ∈ R. (30)
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Figure 15: Double barrier potential with quadratic part (xr = 31).

This problem can also be formulated as follows: find the eigenvalues (En)n∈N

(energies) and the associated real-valued eigenfunctions (φn)n∈N (eigenstates
or ground states) as solutions of

Hφn = Enφn, x ∈ R. (31)

To fix the eigenfunction, it is necessary to impose a normalization condition

‖φ‖L2(R) = 1, (32)

or
‖φE‖L2(R) = 1. (33)

Let us begin with the case where the potential does not depend on the eigen-
function (called linear case here). The nonlinear case will be treated later in
Section 5.

4.1. Square-root ABCs

Before discussing the difficulties related to the ABCs, let us consider the
numerical solution of our problem with a homogeneous Dirichlet boundary
condition. The variational formulation of (30) reads

−α[∂nφEψ]xr
x"

+ α

∫

Ω

∂xφE∂xψ dx +

∫

Ω

V φEψ dx = E

∫

Ω

φEψ dx, (34)

for some test-functions ψ ∈ H1
0 (Ω) [22]. Let S0, M0 and M0

V be respectively
the stiffness matrix, mass and generalized mass matrices associated with the
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potential V for P1 finite element and a homogeneous Dirichlet boundary
condition (these matrices are some elements of Mnh−1(R)). The discrete
problem can be classically formulated as the following generalized eigenvalue
problem: find the pair (E,φE) as solution to

{ (
αS

0 + M
0
V

)
φE = EM

0φE,

‖M0φE‖2 = 1,
(35)

which is a generalized eigenvalue problem with an equality constraint. Here,
φE is a vector in Rnh−1 which is normalized by: ‖M0φE‖2 = 1 (‖·‖2 being
the usual Euclidian norm in Rnh−1). The global algorithm complexity is
essentially the sum of the complexities for building the sparse finite element
matrices and for computing the eigenvalue problem.

In this paper, we use Matlab’s eigs function which provides the p small-
est positive eigenvalues corresponding to the generalized eigenvalue prob-
lem. This function automatically normalizes the eigenvectors in the Euclidian
norm hence fulfilling the normalization constraint in (35). eigs is associated
with the software ARPACK (http://www.caam.rice.edu/software/ARPACK/).

In the case where the potential is not always positive, we use the property
that the smallest eigenvalue E0 is larger than the minimum of the potential
Vmin and solve (35) by a translation of −Vmin. Finally, the solution to (35)
generates the sequence of the p first eigenvalues (E0

n)0≤n≤p−1, eigenvectors
(φ0

n)0≤n≤p−1 and finite element eigenfunctions (φ0
n)0≤n≤p−1 associated with

the Dirichlet boundary condition. Since this eigenvalue problem is linear
with respect to E, we can solve it without using e.g. a fixed point algorithm,
unlike the case of including a square-root ABC as it is explained below. For
this reason, the solution is called ”direct” in the sequel of the paper.

Let us consider now the SABC2 boundary condition

∂nφE =
i√
α

√
E − V φE, on Σ. (36)

The main difficulty with this boundary condition is its nonlinear dependence
on E. As a consequence, we cannot isolate the terms (E,φE) in the right-
hand side of (34) in a linear way, that is under the form EφE. More precisely,
the nonlinear eigenvalue problem to solve is

{ (
αS + MV + BM(EM)

)
φM = EM

MφM ,

‖MφM‖2 = 1,
(37)
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using the matrix notations of the scattering problem. We precise that both
the eigenvalues and eigenfunctions depend on the chosen boundary condition
SABCM by the notation: (EM ,φM). The first p eigencomponents are indexed
as follows: (EM

n ,φM
n ), with 0 ≤ n ≤ p− 1. The nonlinear dependence on the

boundary term is given by the presence of BM(EM). To solve the eigenvalue
problem with SABCM , we have to apply an iterative scheme like a fixed point
method (with a prescribed tolerance ε) and update EM at each iteration step
j.

This procedure implies that we have to a priori choose an eigenvalue of in-
dex n (denoted by EM

n ) that we wish to calculate. This is an important draw-
back since we have to a priori compute successively all the eigenvalues and
associated eigenvectors. In fact, it appears that eigs is also able to provide
an approximation of the first p eigenvalues (EM,j

n )0≤n≤p−1 of (EM
n )0≤n≤p−1

and the corresponding eigenvectors φM
n . As a consequence, we also have to

recompute the boundary terms arising in BM(EM,j
n ). Hence, the fixed point

algorithm reads
{ (

αS + MV + BM(EM,j
n )

)
φM,j+1 = EM,j+1

MφM,j+1,

‖MφM,j+1‖2 = 1,
(38)

each linear problem being solved by using the Matlab routine eigs. More
generally, for a boundary condition with a nonlinear dependence on the en-
ergy E, we use an associated fixed point algorithm. Even if we iterate through
a fixed point algorithm, it appears that the algorithm also simultaneously
gives some approximations of the other eigenvalues and eigenvectors (see the
numerical section). This approach is therefore designated by ”direct” if we
only iterate on one a priori fixed eigenvalue. This algorithm can be applied
successively by iteration using the fixed point algorithm and keeping only
the computed eigenvalue and eigenvector related to the current iteration. Of
course, the resulting algorithm is more expensive but at the same time more
accurate. This approach is designated by ”loop” in the sequel. Let us re-
mark that there is no difference between both approaches for the Dirichlet
problem.

4.2. Linearized ABCs

Unlike the case of the Dirichlet problem, we previously saw that the algo-
rithm related to the square-root ABCs is iterative because of the nonlinearity.
To avoid this problem, we can linearize SABC2 and SABC4. The principle
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is based on a Taylor’s expansion in the regime E / V . This asymptotic
regime is justified in particular for an harmonic potential V (x) = 1

2x
2 since

V grows quickly as soon as we do not place the boundary too close to the
origin and we restrict our computations to relatively not too high energies.
For the boundary condition SABC2 (36), this leads to

∂nφE =
−1√
α

√
V − E φE = −

√
V√
α

√
1 −

E

V
φE ≈ −

√
V√
α

(
1 −

1

2

E

V

)
φE.

Hence, the approximation of SABC2 is designated by SABC2
lin and reads

∂nφ̃E = −
√

V!,r√
α
φ̃E +

1

2

E
√
α
√

V!,r

φ̃E. (39)

Next we can isolate the linear part according to E as

∂nφ̃E = β2
!,rφ̃E + Eγ2

!,rφ̃E, (40)

with β2
!,r and γ2

!,r defined by (39). Including these ABCs in the weak formu-
lation (34) leads, after discretization by the P1 finite element method, to the
following linear eigenvalue problem (M = 2)

{
(αS + MV + CM) φ̃

M
= ẼM(M + DM)φ̃

M
,

‖Mφ̃
M‖2 = 1.

(41)

We have defined the two matrices (M = 2)

CM =





αβM
! 0 0 0

0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 0 0 αβM

r




(42)

and

BM =





−αγM
! 0 0 0

0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 0 0 −αγM

r




. (43)
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Problem (41) is directly solved without iteration by using eigs. The com-
putational cost is therefore the same as for a Dirichlet boundary condition.
Furthermore, since we do not have to iterate, the algorithm provides simul-
taneously the first p eigenvalues (ẼM

n )0≤n≤p−1 and associated eigenvectors

(φ̃
M

n )0≤n≤p−1. The resulting algorithm is called direct. In the case of SABC4,
a similar strategy of linearization of (7) leads to the approximation

∂nφ̃E = β4
!,rφ̃E + Eγ4

!,rφ̃E, (44)

with β4
!,r and γ4

!,r respectively given by

β4
!,r = β2

!,r −
1

4

∂nV|x=x",r

V!,r
(45)

and

γ4
!,r = γ2

!,r −
1

4

∂nV|x=x",r

V 2
!,r

(46)

by using the approximation

1

4

∂nV

E − V
≈ −

1

4

∂nV

V
−

1

4

∂nV

V 2
E. (47)

Adapting the functions, our problem can be written as (41).

4.3. Numerical examples

Example 1 (Harmonic potential). We first consider the well-known (pos-
itive) harmonic potential

V (x) =
1

2
x2, (48)

i.e. the equation to solve is

−
1

2
φ′′E +

1

2
x2φE = EφE, x ∈ R, (49)

fixing hence α to 1
2 . The square-integrable normalized solutions of (49) are

the Hermite functions

φex
n (x) =

π−1/4

√
2nn!

ex2/2 dn

dxn

(
e−x2

)
, n ≥ 0 (50)
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and the corresponding eigenvalues (energies) are

Eex
n = n +

1

2
. (51)

The first four eigenfunctions are plotted in Figure 16. More generally, the
eigenfunctions φex

n (x) vanish for |x| →∞ , but this decay is slower and slower
as n grows.
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Figure 16: Example 1: The first four eigenfunctions (n = 0, 1, 2, 3) associated with the
harmonic potential (48).

Let us recall that, for the case of the square-root ABCs, we have the direct
and loop strategies. In the sequel, when we present an error calculation with
respect to xr or h, this is clearly obtained by the direct approach since n is
fixed. When we compute a range of eigenvalues (curves with n as abscissa),
we report the results for both strategies to compare the respective accuracies.

A first numerical test consists in presenting the error on both the energy
and eigenfunctions depending on the computational domain size. For the
harmonic potential, we always consider a symmetric domain Ω =] − xr; xr[.
For a fixed n, the value of an eigenfunction is closer to zero as xr becomes
larger. This means that we should observe the impact of the ABCs compared
to the homogeneous Dirichlet boundary condition depending on the location
of xr. Figure 17 reports, for the fundamental state n = 0 and in logarithmic
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Figure 17: Example 1: Error (n = 0).
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Figure 18: Example 1: Error (n = 4).
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scale, the absolute error on the eigenvalue |∆E| = |Enum
n −Eex

n | and the error
in the L2-norm of the eigenfunction ||∆φ||L2(Ω) = ||φnum

n −φex
n ||L2(Ω) when the

right endpoint xr varies between 1 and 7. Figure 18 presents similar results
for n = 4 and xr varying between 3 and 10. The calculations are obtained
for the numerical eigenvalues Enum

n equal to EM
n (for SABCM) or ẼM

n (for
SABCM

lin), depending on the order M of the ABC and its type (square-root
or linearized). In the nonlinear case, corresponding to SABCM , the number
of iterations is 50 to reach convergence with ε = 10−12. The spatial step size
is h = 1 · 10−3.
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Figure 19: Example 1: Error on the eigenvalue depending on n (Ω =] − 4; 4[).

For n fixed, we observe an accuracy improvement for both boundary
conditions when xr grows. When xr is close to the origin (for example xr = 1
for n = 0, xr < 3 for n = 4), all the conditions lead to inaccurate results.
However, even for these small values of xr, the linearized ABCs already give
an approximation of the eigenvalue while this is not the case for the Dirichlet
boundary condition as well as for SABC2,4. Indeed for xr = 3 and n = 4,
the ABCs SABC2,4

lin give Ẽn with an error equal to 10−2 when the error for
the homogeneous Dirichlet boundary condition is about 10−1 and 1 for the
square-root ABCs. The same remark holds for n = 0.

It seems from these tests that the linearized ABCs are the most robust
boundary conditions concerning the size of the computational domain. From
a general point of view, the ABCs always provide a better precision, at
least about the same as with the Dirichlet boundary condition but often far
better. The ABCs of different orders generally give a similar accuracy with
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however a better accuracy behaviour of the square-root ABCs but at a higher
computational cost. They improve the accuracy of the Dirichlet boundary
condition from a factor between 10 and 103 according to the configuration,
before attaining the saturation zone. After a certain value of xr, all the
boundary conditions lead to the same accuracy which only depends on the
spatial mesh size. For the computation of the eigenfunctions, this value can
be estimated to xr = 6 for n = 0 and to xr = 6.5 for n = 4.

We also remark that we must increase xr as n grows to get the same
accuracy. To confirm this, we compute the variation of the error when Ω =
] − xr; xr[ is fixed and n varies. We set xr = 4 and for n ∈ [0, 10] we report
the error on the eigenvalues En (Figure 19) for both the ”direct” and ”loop”
approaches. For all the boundary conditions, we can clearly see that the
accuracy decays as n increases. Indeed, the ABCs have been built in the
high frequency regime. In our context, this means that we require that

En − Vr / 0 (52)

holds for a given point xr and for a fixed potential V . As a consequence, this
limits the calculation of energies under the condition En / x2

r/2 for example
in the harmonic case. In the proposed simulation, setting xr = 4 leads to
En / 8, which is coherent with the observations in Figure 19. Another way
to interpret this property is that increasing the accuracy and the range of
eigenvalues must be a priori guided by relation (52). To visualize this, we
show in Figure 20 the potential V as well as the first energies En. We can
read from this figure the abscissa x where E − V becomes negative and we
can have a first idea of the choice of the minimal abscissa xr to choose to get
a sufficiently large gap between E and V (xr) according to (52). For example,
for the fundamental state n = 0, the energy associated with E0 is the lowest
level red curve. From the intersection with the curve of V (x), we can see
that E0 − V (x) is negative for x ≥ 1 and we can estimate that the difference
between E0 and V (x) will be enough starting from about x ≥ 2. Coming
back to Figure 17 confirms these values since choosing xr = 1 provides a
possible computation but does not necessarily converge towards E0 while
setting xr = 2 gives a correct approximation of E0. We can do the same
analysis for n = 4 (fifth red curve from the bottom). We see that E4 − V (x)
is negative from x ≥ 3 and ”very negative” after x ≥ 4. These values must
be connected with the curves of Figure 18.

On this example (n = 4), we also remark that the linearized ABCs are
more accurate than the original square-root ABCs, with a gain of a fac-

28



0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

x

V
(x

)

 

 

V(x)
E

n

Figure 20: Example 1: Harmonic potential and the energies En for 0 ≤ n ≤ 9.

tor 10 in precision. This remark could also have been made on Figure 18
corresponding to n = 4, most particularly for the computation of the eigen-
value. The precision obtained for xr ≥ 4.5 with the linearized boundary
conditions is the same as for the square-root boundary conditions but the
linearization yields an accuracy improvement on smaller computational do-
mains while the iterative algorithm for the square-root conditions does not
converge (2 ≤ xr ≤ 3). Moreover, let us note that the spectrum is simulta-
neously obtained in the linear case without iterating which is a crucial gain
compared to the ”loop” approach, showing hence the need of linearizing. As
a consequence, the ABCs SABCM

lin are, for a similar computational cost, to
privilege to the Dirichlet boundary condition for accuracy purpose and/or
for reducing the computational domain. Let us also finally remark that the
gain in terms of accuracy of the ”loop” approach is interesting as we can see
it in Figure 18(a) but for a relatively higher computational complexity.

We now wish to compare the performances of the linearized and square-
root ABCs. The previous curves illustrated the question of accuracy. Gener-
ally speaking, the square-root ABCs provide a better accuracy but at a higher
computational cost even for the ”direct” approach since a fixed point is re-
quired. We show in Figure 21 the number of iterations when using SABC2

and SABC4, with respect to xr, for two situations: n = 0 and n = 4. Fig-
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Figure 21: Example 1: Number of iterations needed for the algorithms associated with
the different ABCs, with respect to xr for n = 0 and n = 4.

ures 21(a) and 21(b) must be connected to Figures 17 and 18 which are their
equivalent in terms of accuracy. For the first value of xr, we often observe the
divergence of the algorithm (the maximal number of iterations of the fixed
point algorithm is 20). Again, this is one of the interesting property of the
linear ABCs since, if we go back to Figures 17 and 18, they also give a rough
estimate of the eigenvalue. For a slightly larger value of xr, the number of
iterations stagnates to 5. Finally, when the maximal accuracy is reached,
the algorithm needs 2 or 3 iterations. Globally, the computational costs for
the square-root ABCs are roughly 5 times the costs for the linear ones and
the Dirichlet boundary condition. At the same time, a higher accuracy is
obtained.

Finally, we present in Figures 22 (n = 0) and 23 (n = 4) the influence of
the discretization on the accuracy for a given domain ] − xr; xr[. We fix xr

and report the errors |∆E| and ‖∆φ‖L2(Ω) depending to the mesh size h, for h
between h = 5 ·10−2 and h = 1 ·10−4. The value of xr is chosen such that the
saturation of the error has not been reached yet so that we can see an effect
of the ABCs compared to the Dirichlet boundary condition. One remarkable
property is that for n = 0 (Figure 22) the accuracy remains increasing with
the ABCs by refining the mesh while this is not the case for the Dirichlet
boundary condition. Indeed, we cannot gain more accuracy after h = 10−2

if we do not increase the size of the computational domain. Concerning
the ABCs (which are already more accurate than the Dirichlet boundary
condition for h = 10−2), we can still improve the solution by refining, most
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Figure 22: Example 1: Error (xr = 3.5 and n = 0) with respect to h.

particularly with SABC4. This remark holds for both the eigenvalues and
eigenvectors.

Example 2 (’Double-well” potential). Let us now consider other poten-
tials like the so-called ”double-well” potential

V (x) =
1

2
(1 − x2)2 (53)

which is drawn in Figure 24(a). In this situation, we have α = 1
2 in (29).

The energy of the fundamental state is [23]

E ≈ 0.56889338. (54)

and is presented in Figure 24(b), superposed to the potential. We can directly
see the high-frequency assumption E / (1 − x2

r)
2/2. For xr = 1.5, we find

(1 − x2
r)

2/2 ≈ 0.78 and (1 − x2
r)

2/2 = 4.5 for xr = 2. Then we have to
choose xr ≥ 2 to get a good accuracy. We can observe this condition in
Figure 25 which presents the error on this eigenvalue for each boundary
condition depending to the domain size (position of xr). As the harmonic
potential, the error decays as the size of the domain increases. The ABCs can
be ordered as previously with a much better accuracy than with the Dirichlet
boundary condition, most particularly for the linearized ABCs for the same
computational cost. For xr = 1.5, we remark that all the conditions lead
to a wrong computation of E. As soon as the high frequency assumption is
fulfilled for xr = 2, then we have a good error precision.
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Figure 23: Example 1: Error (xr = 4 and n = 4) with respect to h.
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Figure 24: Example 2: The ”double-well” potential and its fundamental energy.

32



1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

xr

|∆
E
|

 

 

Dirichlet

SABC
2

SABC
4

SABC
2

lin

SABC
4

lin

Figure 25: Example 2: Error on the first eigenvalue for the ”double-well” potential (h =
10−3).

The three potentials that we analyze now have all the property to lead
to negative eigenvalues. A necessary condition to justify the application of
the previous approach is that

V (xr) − E ≥ 0. (55)

Hence, according to n and the rank of the eigenvalue that we are looking
for, we have to choose xr sufficiently large so that condition (55) is fulfilled.
Since V is negative and even if we have E / V , then linearizing SABC2,4 by
using a Taylor’s expansion with respect to E/V is no longer relevant since V
can be equal to zero. Let us set Vmin = minx∈R V (x) and using the property
that the Schrödinger equation is linear, we define a new positive potential
W = V − Vmin and Fn = En − Vmin. Problem (29)–(30) is then equivalent to

−αφ′′E + WφE = FnφE. (56)

The boundary conditions SABC2,4
lin are so the linearized versions of SABC2,4

according to 1/(V −Vmin) (and not 1/V ) by using the equivalent assumption

E − Vmin / V − Vmin. (57)
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Example 3 (Pöschl-Teller potential). The Pöschl-Teller potential [24] is
given by

V (x) = −
λ(λ+ 1)

cosh2(x)
, (58)

and α = 1 in (29). This potential is always negative (see Figure 26(a)). For
λ = 9, it leads to nine eigenvalues

En = −(9 − n)2, 0 ≤ n ≤ 8. (59)

In Figure 26(b), we plot the different energy levels, compared to the potential.
To take into account the translation, we rather present V (x) − Vmin and
En − Vmin. For a given eigenstate, we can a priori estimate the size of
the computational domain to consider that the high frequency hypothesis
is satisfied and that the convergence of the iterative algorithm occurs. We
set h = 5 · 10−4 and analyze, for n fixed, 0 ≤ n ≤ 8, the error on En for
the different ABCs depending on the position of xr. We depict the results
in Figure 26 for n = 0, n = 4 and n = 8. The ABCs always improve
the accuracy compared to the Dirichlet boundary condition. This is most
particularly clear for large n. For n = 8 and ] − 5; 5[, the accuracy obtained
with the Dirichlet boundary condition is less than 10−2 and about 5 ·10−5 for
SABC2,4. To get a similar precision with the Dirichlet boundary condition,
we would have to choose xr = 10 leading therefore to a significant larger
computational domain. The effect of the linearized ABCs is variable. For
n = 0 the ABCs SABC2,4

lin are almost as precise as the ABCs SABC2,4, but
when n increases, the accuracy is similar to the one obtained by using the
Dirichlet boundary condition.

For the same potential, we observe in Figure 28 the error on En for
xr fixed. For xr = 2, we notice a factor 10 to 100 between the Dirichlet
boundary condition and the ABCs for the states 2 ≤ n ≤ 6. The second-
and fourth-order ABCs have a similar accuracy. At xr = 4, all the boundary
conditions are equivalent for the first eigenstates but when n grows the ABCs
remain accurate while the Dirichlet boundary condition is less precise (n = 6,
n = 7). Indeed, they yield an accuracy of the eigenvalue about 10−3 while
the Dirichlet boundary condition gives only 10−1 (n = 8).

Example 4 (Woods-Saxon potential). The Woods-Saxon potential reads

V (x) = c0z(x) [1 − a(1 − z(x))] , x ∈ [0, +∞[, (60)
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Figure 26: Example 3: Pöschl-Teller potential and its first nine energy levels.

with

z(x) =
1

ea(x−b) + 1
,

and setting the parameters c0 = −50, a = 5/3, b = 7. The coefficient α in
(29) is equal to 1. For this potential [24], the first 14 eigenvalues of H are
negative and given by (with a round-off error equal to 10−15)

E1 = −49.457788728082580 E8 = −30.912247487908848

E2 = −48.148430420006361 E9 = −26.873448916059872

E3 = −46, 290753954466088 E10 = −22.588602257693220

E4 = −43.968318431814233 E11 = −18.094688282124421

E5 = −41.232607772180218 E12 = −13.436869040250077

E6 = −38.122785096727920 E13 = −8.676081670736546

E7 = −34.672313205699651 E14 = −3.908232481206230

The Woods-Saxon potential is only defined for some positive values of x.
For this reason, we select the computational domain [0;xr]. At x! = 0, we
impose the homogeneous Dirichlet boundary condition φ(0) = 0. We present
this potential and its energy levels En − Vmin compared to V (x) − Vmin in
Figure 29.

Figure 30 shows for n = 3 and n = 14 the error on the eigenvalues when
we move the right endpoint xr. We consider h = 5 · 10−4. Independently of
the eigenstate, the ABCs improve clearly the results obtained by using the
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Figure 27: Example 3: Error of the eigenvalues for the different ABCs and the Pöschl-
Teller potential.
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(a) xr = 2 (loop)
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(c) xr = 2 (direct)
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(d) xr = 4 (direct)

Figure 28: Example 3: Error on the eigenvalues according to n for the Pöschl-Teller
potential.
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Figure 29: Example 4: The Woods-Saxon potential and its energy levels.

Dirichlet boundary condition. For n = 3, the fourth-order ABC seems to
lead to the best results compared to the second-order ABC. However, the
case n = 14 does not confirm this. Concerning the linearized ABCs, their
effect is variable. For n = 3, we get the same accuracy between the linearized
and original square-root ABCs for a fixed order. For n = 14, the linearized
ABCs are slightly better than the Dirichlet boundary condition and clearly
much less accurate than their square-root versions. However, the extreme
point xr = 7 is an exception since the iterative algorithm does not converge
while the linearized ABCs provide an approximate value of E14 with an error
of 0.5.
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Figure 30: Example 4: Woods-Saxon potential depending on xr for n fixed.
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(a) xr = 6
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Figure 31: Example 4: Woods-Saxon potential with respect to n for xr fixed (loop).

Let us now analyze the accuracy with respect to the eigenstate for a
given computational domain (see Figure 31). This confirms the previous re-
marks, in particular concerning the accuracy improvement when considering
an ABC. Moreover, the fourth-order ABC always lead to at least the same
precision as the second-order ABC. This can be seen for xr = 6 since we
have a factor about 10 between the two ABCs. These computations are done
with the loop approach. The linearized ABCs yield a clear improvement
of the results compared with the Dirichlet boundary condition at the same
computational cost.

Example 5 (Morse potential). Finally, we consider the Morse potential
[24]

V (x) = De

[
(1 − e−β(x−xe))2 − 1

]
, (61)

with α = 1 in (29). The constant De is called the dissociation energy, xe

is the equilibrium internuclear distance and β is a disposable parameter.
The numerical values are De = 605559/1000, xe = 240873/100000, β =
988879/1000000. The n-th exact eigenvalue is given by

En = −β2

(√
De

β
−

(
n −

1

2

))2

, n ≥ 1. (62)

This potential and its energy levels are shown in Figure 32.
For the numerical study, we set h = 5 · 10−4 and present the error de-

pending on xr (Figure 33(a)) or n (Figure 33(b)). For this potential, the
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Figure 32: Example 5: The Morse potential and its energy levels.
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(b) Error according to n, for xr = 3.5 (loop)

Figure 33: Example 5: Morse potential.

difference is less visible than in the other examples, the most accurate ap-
proach being the loop approach for SABC2,4. Nevertheless, the approach
based on the ABCs is always at least as accurate as the one with a Dirichlet
boundary condition, with sometimes an improvement factor between 10 and
100 in some zones. We can remark that this holds for the linearized ABCs
too. The plot of the energy levels in Figure 32 allows to adjust the size of
the computational domain.
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5. Application to the computation of ground states: the nonlinear
case

5.1. Problem and numerical scheme

We are interested in computing ground states for nonlinear Schrödinger
equations. Most particularly, we consider a nonlinear potential which is the
sum of a cubic nonlinearity and a harmonic potential. This kind of nonlin-
earity arises e.g. in Bose-Einstein condensates [25, 26, 27]. The dimensionless
one-dimensional Gross-Pitaevskii equation [23, 28, 29] reads

i
∂ψ

∂t
= −

1

2
∂2

xψ + V ψ + β|ψ|2ψ, x ∈ R, (63)

setting V (x) = 1
2x

2 and where the nonlinearity coefficient β can be negative
or positive. We restrict ourselves to this special nonlinearity but all results
can be directly extended to other cases. In view of computing the stationary
solutions we write

ψ(x, t) = e−iEtφE(x), (64)

where E is the chemical potential of the condensate and φE is a real-valued
function independent of time. Let us note that the stability of exactly this
kind of problems was studied analytically in [30, 31, 32] and hence can be
checked numerically using our proposed ABCs.

Function φE is then solution to

−α∂2
xφE + V φE + β |φE|2 φE = EφE, x ∈ R, (65)

where α = 1
2 , under the normalization constraint

‖φE‖L2(R) = 1. (66)

Finally, the function φE of the problem (65)–(66) satisfies the boundary
conditions φ′E(0) = 0 and φE(±x) → 0 for x → +∞. The resulting system
is a nonlinear eigenvalue problem under constraint. The eigenfunction φE

being known, we can determine the associated eigenvalue E by

E =

∫

R

α |∂xφE|2 + V φ2
E + βφ4

E dx. (67)

The problem (65)-(66) is solved on a symmetric computational domain
Ω =]−R; R[, with R > 0 and Σ = {−R; R}. We keep on denoting this domain
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by Ω =]− x!; xr[. We introduce (E0,φ0) as a solution to the boundary value
problem with Dirichlet boundary condition






−α∂2
xφE + V φE + β|φE|2φE = EφE, in Ω,

φE = 0, on Σ,

‖φE‖L2(Ω) = 1.

(68)

Analogously, we designate by (EM ,φM) the solution computed with a
M -th order nonlinear ABC obtained from the linear stationary ABCs (6)–
(7). To this end, we replace formally the potential V by the new nonlinear
potential V + β|φ|2 to get the second-order ABC

∂nφE =
i√
α

√
E − V − β|φE|2 φE, on Σ, (69)

and fourth-order ABC

∂nφE =
i√
α

√
E − V − β|φE|2 φE +

1

4

∂n(V + β|φE|2)
E − V − β|φE|2

φE, on Σ. (70)

For the sake of clarity, we keep on designating by SABCM the above M -th
order ABC.

The interior equation is discretized by the semi-implicit scheme

−α∂2
xφ

M,j+1 + V φM,j+1 + β|φM,j|2φM,j+1 = EM,j+1φM,j+1, (71)

for j ≥ 0 and M = 0, 2, 4. Now and independently of the boundary condition,
the algorithm must be iterative since the interior scheme is nonlinear. As
a consequence, we systematically use the fixed point method on the n-th
eigenvalue EM

n and eigenfunction φM
n for solving the eigenvalue problem.

The variational formulation reads

− α[∂nφ
M,j+1
n ψ]xr

x"
+ α

∫

Ω

∂xφ
M,j+1
n ∂xψdx +

∫

Ω

V φM,j+1
n ψdx

+ β

∫

Ω

|φM,j
n |2φM,j+1

n ψdx = EM,j+1
n

∫

Ω

φM,j+1
n ψdx, (72)

for any test-function ψ. In the Dirichlet case, by choosing ψ ∈ H1
0 (Ω), which

makes the first term of the equation vanish, the discrete problem is, for
M = 0,






(
αS

0 + M
0
V + βM

0
|φM,j

n |2

)
φM,j+1

n = EM,j+1
n M

0φM,j+1
n ,

‖M
0φM,j+1

n ‖2 = 1.
(73)
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For the ABCs, we use for ∂nφM,j+1
n the fixed point version

∂nφ
M,j+1
n =

i√
α

√
EM,j

n − V − β|φM,j
n |2 φM,j+1

n (74)

for the second-order ABC (69) and

∂nφ
M,j+1
n =

(
i√
α

√
EM,j

n − V − β|φM,j
n |2 +

1

4

∂n(V + β|φM,j
n |2)

EM,j
n − V − β|φM,j

n |2

)
φM,j+1

n

(75)
for the fourth-order condition (70). Hence, the term −α[∂nφM,j+1

n ϕ]xr
x"

leads,

from a discrete point of view, to a matrix contribution B
j
MφM,j+1 for the M -

th order ABC, where the matrix coefficients B
j
M only depend on the values of

φM,j
n and EM,j

n . By applying the fixed point algorithm on the n-th eigenvalue
EM

n and eigenvector leads to the iterative scheme φM
n






(
αS − αB

M,j + MV + βM|φM,j
n |2

)
φM,j+1

n = EM,j+1
n MφM,j+1

n ,

‖MφM,j+1
n ‖2 = 1.

(76)

The matrix coefficients BM,j are given by

(BM,j)1,1 =
i√
α

√
EM,j

n − V! − β|φM,j
n,! |2 +

1

4

∂n(V + β|φM,j
n |2)|x=x"

EM,j
n − V! − β|φM,j

n,! |2
(77)

and

(BM,j)nh+1,nh+1 =
i√
α

√
EM,j

n − Vr − β|φM,j
n,r |2 +

1

4

∂n(V + β|φM,j
n |2)|x=xr

EM,j
n − Vr − β|φM,j

n,r |2
(78)

for SABC4 (M = 4). For SABC2 (M = 2), it is sufficient to retain only the
first term of each of the above expressions. We have set here: φM,j

n,! = φM,j
n,|x=x"

and φM,j
n,r = φM,j

n,|x=xr
.

As in the linear case, we can formulate the linearized versions of the
second- and fourth-order ABCs. These ABCs are then designated by SABC2,4

lin .
Doing so, we have the second-order ABC

∂nφ
M,j+1
n = −

√
V√
α
φM,j+1

n −
β

2

1
√
α
√

V
|φM,j

n |2φM,j+1
n +

1

2

1
√
α
√

V
EM,j+1

n φM,j+1
n

(79)
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and the fourth-order ABC

∂nφ
M,j+1
n = −

√
V√
α
φM,j+1

n −
β

2

1
√
α
√

V
|φM,j

n |2φM,j+1
n +

1

2

1
√
α
√

V
EM,j+1

n φM,j+1
n

+

(
−

1

4

∂n(V + β|φM,j
n |2)

V
+
β

4

|φM,j
n |2∂n(V + β|φM,j

n |2)
V 2

)
φM,j+1

n

− EM,j+1
n

∂n(V + β|φM,j
n |2)

V 2
φM,j+1

n .

(80)

The iterative scheme then reads





(
αS − αB

M,j + MV + βM|φM,j
n |2

)
φM,j+1

n = EM,j+1
n

(
M + αB

j
E,M

)
φM,j+1

n

‖MφM,j+1
n ‖2 = 1.

(81)
The matrix coefficients BM,j et B

M,j
E are given by

(BM,j)1,1 = −
√

V!√
α

−
β

2

1
√
α
√

V!

|φM,j
n,! |

2

−
1

4

∂n(V! + β|φM,j
n,! |2)

V!
+
β

4

|φM,j
n,! |2∂n(V! + β|φM,j

n,! |2)
V 2

!

(82)

and

(BM,j
E )1,1 =

1

2

1
√
α
√

V!

−
∂n(V! + β|φM,j

n,! |2)
V 2

!

(83)

for the fourth-order ABC. The expression of the coefficients of index (nh +
1, nh + 1) is the same but taking its value at x = xr. Finally, we can easily
extract the coefficients associated with the second-order ABC by keeping
only the first term of each expression. Unlike the linear situation, there is no
gain in terms of computational time here since the problem is fully nonlinear.

5.2. Numerical results

We consider (65) for different values of the parameter β. For each value,
we uniquely determine the fundamental state n = 0, see Figure 34. In Table 1
we report the values from [28]. However, these approximate eigenvalues
have a limited accuracy. To have some new reference values, we numerically
compute them on the domain ]− 30; 30[, with a discretization step h = 10−4
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and SABC2 (70). This method provides some new values reported in Table 2
which are conform with Table 1. Let us note here that we do not give some
results for larger values of β because the fixed point algorithm then diverges.
It would be necessary at this point to use another numerical algorithm (a
Newton method or a continuation method) for solving the problem with an
ABC. Finally, we present in the sequel the absolute errors: ∆E = |Enum −
Eref | and ∆φ(0) = |φnum(0) − φref(0)|, where ’ref’ refers to the values in
Table 2 and ’num’ to the ones computed with the proposed method.
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Figure 34: Eigenfunctions (for xr = 4).

β φE(0) E
−12.5484 1.7718 −19.669
−6.2742 1.2654 −4.9553
−2.5097 0.9132 −0.8061

0 0.7511 0.5000
3.1371 0.6459 1.5265

Table 1: Numerical values Eref and φref
E (0) from [28] depending on β.

For the simulations, the initialization of the fixed point algorithm uses
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β φE(0) E
−12.5484 1.772437368515101 −19.693047803006280
−6.2742 1.265512713848083 −4.956873352670034
−2.5097 0.913230941756339 −0.806257128073956

0 0.751125544464943 0.500000000000000
3.1371 0.645961493829006 1.526594842533555

Table 2: Numerical values Eref and φref
E (0) computed on a larger domain for different β.

the exact harmonic potential solution (β = 0)

φM,0
0 (x) =

1

π1/4
e−x2/2.

The fixed point algorithm tolerance is ε = 10−12 and the mesh size of the
linear finite element method is h = 10−3. Figures 35, 36 and 37 report the
error on both the eigenvalue and eigenfunction at the origin depending on the
right endpoint xr, for the values β = −6.2742, β = −2.5097 and β = 3.1371,
respectively.

Generally speaking, for a given case, all the algorithms converge with
about the same number of iterations, independently of the boundary condi-
tion. We also note that, for negative values of β, the linearized ABCs lead to
the same accuracy as the nonlinear ABCs (not reported here) for a similar
computational time. In Figures 35 and 36, we only present the results for
the Dirichlet boundary condition and SABC2,4. For β > 0 (Figure 37), the
linearized ABCs possess an accuracy at least equal to the one with SABC2,4.
We do not have any explanation about this fact. For β = −6.2742 (Fig-
ure 35), all the algorithms converge in 23 iterations. The ABCs improve the
accuracy from a factor 10 compared with the Dirichlet boundary condition
for xr = 1.5, and almost 100 when xr = 2, then for xr ≥ 2.5, all the boundary
conditions have the same accuracy: 10−5. The precision of the second-order
ABC is slightly better than the fourth-order ABC. The reason is that these
ABCs are formally derived, unlike the linear case. For β = −2.5097 (Fig-
ure 36), the convergence takes 14 iterations. The ABCs again provides a
gain of precision compared with the Dirichlet boundary condition for xr be-
tween 1.5 and 3.5, with a better accuracy for the second-order ABC (see the
points xr = 3 and xr = 2.5 for example). For β = 3.13712, the situation is
quite similar but requires 77 iterations to converge. Unlike, the two previ-
ous cases, the linearized ABCs give a slightly better accuracy than for the
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Figure 35: Errors ∆E and ∆φ(0) for β = −6.2742.

original ABCs.

6. Conclusion

We have proposed some accurate and physically admissible absorbing
boundary conditions for modeling linear and nonlinear stationary Schrödinger
equations with variable potentials. Based on numerical schemes, these bound-
ary conditions have been validated for many configurations including linear
scattering and nonlinear ground-state computations.

Further extensions will include higher dimensional problems as well as
variable mass Schrödinger equations among others. It might also be valuable
to extent the presented work to systems of Schrödinger equations that arise
as so-called multiband effective mass approximations (MEMAs) to model
electronic states in modern semiconductor nanostructures, cf. [33, 34, 35].
Let us finally remark that applications to generalized Schrödinger equations
could also be developed by adapting the methods developed in [2, 36].
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Figure 36: Errors ∆E and ∆φ(0) for β = −2.5097.
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Figure 37: Errors ∆E and ∆φ(0) for β = 3.1371.
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