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Abstract

Four families of ABCs where built in [6] for the two-dimensional linear Schrödinger
equation with time and space dependent potentials and for general smooth
convex fictitious surfaces. The aim of this paper is to propose some suitable
discretization schemes of these ABCs and to prove some semi-discrete stabil-
ity results. Furthermore, the full numerical discretization of the corresponding
initial boundary value problems is considered and simulations are provided to
compare the accuracy of the different ABCs.

Key words: Schrödinger equation; absorbing boundary conditions; variable
potential.
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1. Introduction

The aim of this paper is to propose accurate and stable discretizations to
some Absorbing Boundary Conditions (ABCs) for the two-dimensional linear

March 2012



time-dependent Schrödinger equation [2] with a general potential V{
i∂tu+ ∆u+ V (x, y, t)u = 0, (x, y) ∈ R2, t > 0
u(x, y, 0) = u0(x, y), (x, y) ∈ R2,

(1)

where u0 ∈ L2(R2) is compactly supported in the future bounded spatial com-
putational domain Ω, with fictitious boundary Σ. The potential function is
C∞, space and time dependent and real-valued. We assume that V is a smooth
potential outside the computational domain ΩT = Ω×]0;T [, T being the final
time of computation. We also introduce ΣT := Σ×]0;T [. Under suitable condi-
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Figure 1: Geometry

tions, the initial boundary value problem (1) is well-posed [8, 9]. Moreover, the
L2-norm of the solution is conserved in the free-space

∀t > 0, ‖u(t)‖2L2(R2) =
∫

R2
|u(x, y, t)|2dxdy = ‖u0‖2L2(R2) , (2)

where ‖·‖2L2(R2) is the L2(R2)-norm. Finally, n is the outwardly directed unit
normal vector to Σ. In practical applications, considering potential effects is a
crucial and active topic that is not completely well managed in physics [10, 11,
19, 20, 23].

Absorbing Boundary Conditions are used in practical computations when
an unbounded domain has to be truncated for computational purposes. When
a wave strikes the fictitious boundary Σ that is introduced for the numerical
solution, and when this wave should be outgoing to the bounded computational
domain Ω, the aim of the ABC is to minimize the reflection back into the
computational domain that is generated by Σ. When there is no reflection at
all, the boundary condition is generally called ”Transparent Boundary Condi-
tion (TBC)”. Nevertheless, such a boundary condition is generally out of reach,
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most particularly in our situation. For this reason, ABCs, which are approxi-
mations of the TBC, are generally preferred since mathematical techniques can
be developed to obtain such approximations. For a very complete and global
overview of these different approaches we refer to [2]. From the point of view of
ABCs and for the problem considered in this paper, absorbing boundary con-
ditions for some particular time independent one-dimensional potentials can be
obtained by using explicit expressions of the Dirichlet-to-Neumann (DtN) oper-
ator through special functions (for example Airy’s functions) [17, 18] or adapted
techniques (Floquet’s theory for sinusoidal potentials [24]).

In a first part [6], we derived (under a high frequency assumption) differ-
ent kinds of ABCs by using some adaptations of pseudodifferential operators
techniques introduced in the fundamental papers [13, 15] by Engquist & Majda.
Based on symbolic calculus associated with some special fractional pseudod-
ifferential operators, this method allows us to build asymptotic expansions of
the total symbols for the underlying pseudodifferential operators. This leads
to two classes of ABCs according to two possible constructive strategies. The
first family of ABCs (obtained by Strategy I in the sequel of the paper, and
also in [6]) is associated with a Schrödinger-like equation after a gauge change
has been applied. The second approach, that we call Strategy II, consists in
directly building ABCs for the initial Schrödinger equation of system (1). The
ABCs are defined through approximations of the exact Dirichlet-to-Neumann
map which are nonlocal both in space and time. This constraint is very restric-
tive for an effective calculation since this leads to additional memory costs and
long computational times. One natural way to overcome this problem is to suit-
ably localize the involved nonlocal operators. Therefore, each family of ABCs
is approximated by using Taylor’s or Padé’s expansions of the symbols. This
results in four types of ABCs. Well-posedness of the associated initial boundary
value problems have been obtained in [6] for some of the proposed ABCs. We
can then expect some similar properties at the discrete level to prove that the
related schemes are unconditionally stable. The aim of this paper is to pro-
pose some discretization schemes of the ABCs derived in [6] and to prove when
possible some stability results. Furthermore, through numerical simulations on
nontrivial cases, we want to compare the different ABCs in terms of accuracy
and efficiency.

The paper is organized as follows. In the second Section, we explain the
main ingredients concerning the construction of absorbing boundary conditions
and give the four families of ABCs obtained in [6]. In Section 3, we consider
semi discretizations in time based on the Crank-Nicolson scheme. We explain
how to obtain suitable discrete schemes adapted to the approximation of the
different kinds of ABCs. In particular, stability results are proved under a semi-
discrete high frequency assumption. Section 4 deals with the full numerical
approximation and finite element implementation of the ABCs. This part is
completed with various computations to analyze and compare the accuracy of
the different ABCs for time independent and time dependent potentials. We
draw a conclusion in Section 5. Finally, Annex A provides some technical details
about the Z-transform which plays a central role in the proofs of the paper.
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2. Four families of Absorbing Boundary Conditions

Let us consider that the smooth (closed) fictitious boundary Σ := ∂Ω is
convex to ensure that the solution u is an outgoing wave to the computational
domain Ω. We denote by s the anticlockwise directed curvilinear abscissa along
Σ and by κ := κ(s) the local (positive) curvature at s. If we introduce the
curvilinear derivative ∂s, then the Laplace-Beltrami operator over Σ is defined
by ∆Σ := ∂2

s .
To introduce properly the ABCs derived in [6], we need the fractional inte-

gration operators Iα/2t of order α/2 defined by

I
α/2
t f(t) =

1
Γ(α/2)

∫ t

0

(t− s)α/2−1f(s) ds, for α ∈ N. (3)

where Γ designates the Gamma special function. Another operator is the frac-
tional differential operator ∂1/2

t given by

∂
1/2
t f(t) =

1√
π
∂t

∫ t

0

f(s)√
t− s

ds. (4)

The construction of the four families of absorbing boundary conditions (ABC)
obtained in [6] was realized thanks to pseudodifferential operators theory and
associated symbolic calculus. We refer to [6] for some notions about this theory.
The symbols of the ABCs involve the curvilinear abscissa s, the time variable
t but also their respective co-variable ξ and τ . Their derivation is restricted
by the high frequency microlocal assumption which requires that the points
(s, t, ξ, τ) lie in the quasi hyperbolic zone H =

{
(s, t, ξ, τ),−τ − ξ2 > 0

}
. As

we will see later, we will need this assumption at the discrete level to guaran-
tee good properties of the numerical schemes used to approximate system (1).
The development of the different ABCs can be done following two strategies to
which, once again, two kinds of approximations are associated. We therefore
obtain four families of boundary conditions.

A first strategy is the following. Let us consider that u is the exact solution
of system (1) and let us define V as a primitive of the potential V with respect
to the time t

V(x, y, t) =
∫ t

0

V (x, y, s) ds. (5)

Let us introduce v as the new unknown defined by

v(x, y, t) = e−iV(x,y,t)u(x, y, t). (6)

We obviously have v0(x, y) = u0(x, y). Moreover, plugging u given by (5)–(6)
into the Schrödinger equation with potential in (1) shows that v is solution to
the variable coefficients Schrödinger equation

i∂tv + ∆v + 2i∇V · ∇v +
(
i∆V − |∇V|2

)
v = 0, in ΩT . (7)
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The fundamental reason why considering this change of unknown is crucial is
that this first step would lead, in the one-dimensional case, to the Transparent
Boundary Condition applied to v and associated to (7) for a time-dependent
but x-independent potential. This is not the case if we work directly with the
initial unknown u for (1) which would give an approximate artificial boundary
condition even for a time-dependent and x-independent potential. We call this
strategy the ”Phase Function Transformation Strategy”.

The second strategy, probably more natural, consists in building an approx-
imate boundary condition based on the equation (1) with unknown u. We call
this second strategy ”Direct Strategy”.

In each case, ABCs are obtained through a truncation of the asymptotic
expansion of the total symbol of the Dirichlet-to-Neumann map. We thus obtain
a sequence of ABCs of increasing order M , the integer M being the number of
finite symbols considered in the asymptotic of the total symbol. This is what we
call ”a family of ABCs”. It is expected that increasing M numerically improves
the accuracy of the ABC.

The ABCs obtained by strategies I and II are nonlocal both in space and
time. We propose two different techniques to build local versions of the ABCs.
The first one, based on a high frequency hypothesis, is based on a Taylor expan-
sion. However, it only gives access to local ABCs in space that however remain
nonlocal in time. The second approach consists in considering approximations
of ABCs at the symbolic level. We use in this case rational approximation (Padé
approximation here) of the square-root. The advantage of this method is that
it allows us to build fully local ABCs in space and time.

2.1. Strategy I: Phase Function Transformation
In strategy I and using a Taylor expansion to localize the boundary condi-

tions with respect to time, the ABCs of order M are given by

∂nu+ ΛM1,Tu = 0, on ΣT , (8)

where the operators ΛM1,T are defined on ΣT by

Λ2
1,Tu = e−iπ/4eiV∂

1/2
t

(
e−iVu

)
+
κ

2
u, (9)

Λ3
1,Tu = Λ2

1,Tu (10)

−eiπ/4eiV
(
κ2

8
+

∆Σ

2
+ i∂sV∂s +

1
2

(i∂2
sV − (∂sV)2)

)
I

1/2
t

(
e−iVu

)
, (11)

Λ4
1,Tu = Λ3

1,Tu+ ieiV
(
∂s(κ∂s)

2
+
κ3 + ∂2

sκ

8
+
i∂sκ∂sV

2

)
It
(
e−iVu

)
− i sg(∂nV )

4

√
|∂nV | eiVIt

(√
|∂nV | e−iVu

)
, (12)

and where the phase function V is given by

V(x, y, t) =
∫ t

0

V (x, y, σ) dσ.
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These ABCs are denoted by ABCM1,T in the sequel.

The second type of boundary conditions is given by the following formulation

∂nu+ ΛM1,Pu = 0, on ΣT (13)

where the operators ΛM1,P are defined on ΣT by

Λ1
1,Pu = −ieiV

√
i∂t + ∆Σ

(
e−iVu

)
, (14)

Λ2
1,Pu = Λ1

1,Pu+
κ

2
u+ ∂sVeiV∂s (i∂t + ∆Σ)−1/2 (

e−iVu
)

(15)

− κ

2
eiV (i∂t + ∆Σ)−1 ∆Σ

(
e−iVu

)
. (16)

We specify these boundary conditions by ABCM1,P . The idea is then to ap-
proximate the operators

√
i∂t + ∆Σ + V and (i∂t + ∆Σ + V )−1 by differential

operators which allow us to build local versions of the ABCs. This operation is
realized with Padé approximants (see section 3.4). We will denote this method
by Padé approach in the sequel.

2.2. Strategy II: direct method
In strategy II (direct method) and following Taylor expansions, the ABCs

of order M are given by

∂nu+ ΛM2,Tu = 0, on ΣT . (17)

The operators ΛM2,T are defined on ΣT by

Λ1
2,Tu = e−iπ/4∂

1/2
t u, (18)

Λ2
2,Tu = Λ1

2,Tu+
κ

2
u, (19)

Λ3
2,Tu = Λ2

2,Tu− eiπ/4
(
κ2

8
+

∆Σ

2

)
I

1/2
t u (20)

− eiπ/4 sg(V )
2

√
|V | I1/2

t

(√
|V |u

)
,

Λ4
2,Tu = Λ3

2,Tu+ i

(
∂s(κ∂s)

2
+
κ3 + ∂2

sκ

8

)
It u (21)

− i sg(∂nV )
4

√
|∂nV | It

(√
|∂nV |u

)
.

The boundary conditions are denoted by ABCM2,T in the rest of the paper.

Following the Padé approach like in strategy I, the ABCs of order M are
given by

∂nu+ ΛM2,Pu = 0, on ΣT , (22)
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where the operators ΛM2,P are defined on ΣT by

Λ1
2,Pu = −i

√
i∂t + ∆Σ + V u, (23)

Λ2
2,Pu = Λ2

2,Pu+
κ

2
u− κ

2
(i∂t + ∆Σ + V )−1 ∆Σu. (24)

The ABCs are denoted by ABCM2,P .

Remark 2.1. . The construction of the ABCs may be generalized to the case of
nonlinear problems. The idea is to replace formally the potential by the nonlin-
earity in the above ABCs. Considering schemes adapted to nonlinear problems,
some of the points described below can be used. The way the ABCs compare
might be different from what we observe in the potential case, partly due to
heavy computational costs for some of the ABCs. Some numerical results for a
cubic nonlinearity are presented in [5] showing accurate results.

3. Semi-discretization of the boundary conditions

We have obtained four families of artificial boundary conditions labelled
ABCM1,T , ABCM1,P , ABCM2,T and ABCM2,P , for different orders M ∈ {1, 2, 3, 4}.
The associated operators linked to these boundary conditions are given by the
equations (8), (13), (17) and (22). The aim of this section is to present the semi-
discrete (with respect to time) numerical schemes associated to these different
absorbing boundary conditions. In a first step, we are interested in the semi-
discretization of the equation in the computational domain Ω. The second step
consists in studying the properties of the discretizations for each ABC.

3.1. Semi-discrete interior scheme
We have to deal with the following IBVP for the Schrödinger equation

i∂tu+ ∆u+ V u = 0, in ΩT ,

∂nu+ ΛMu = 0, on ΣT ,
u(·, 0) = u0, in Ω,

(25)

where ΛM denotes one of the operators of order M , M ∈ {1, 2, 3, 4}, among
the four families of ABCs. We set N as the number of time steps for a uni-
form discretization of [0;T ]. Therefore, we have ∆t = T/N . For tn = n∆t,
with 0 ≤ n ≤ N , un(x) designates an approximation of u(x, tn). A semi-
discrete approximation adapted to the Schrödinger equation on ΩT is given by
the Crank-Nicolson scheme

i
un+1 − un

∆t
+ ∆

un+1 + un

2
+
V n+1 + V n

2
un+1 + un

2
= 0, 0 ≤ n ≤ N, (26)

setting V n = V (x, tn). For implementation issues, it is useful to introduce the
new variables vn+1 = un+1/2 = un+1+un

2 and Wn+1 = V n+1/2 = V n+1+V n

2 , with
v0 = u0 and W 0 = V 0. The scheme can then be written

2i
∆t

vn+1 + ∆vn+1 +Wn+1vn+1 =
2i
∆t

un, 0 ≤ n ≤ N. (27)
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It is well-known that a discretization of the ABC which preserves the stability
of the Crank-Nicolson scheme for the free-potential Schrödinger equation is not a
trivial task. We propose here two solutions for the discretization of ABCM·,{T,P}.
The first one is based on semi-discretization of the fractional operators involved
in (8) and (13). We are then able to show that the resulting semi-discrete scheme
is unconditionally stable. At the same time, a solution based on convolution
operators may require long computational times (but can be strongly accelerated
through recent fast algorithms [25]). The second solution that we study is
based on the approximation of the fractional operators through the solution of
auxiliary time-dependent partial differential equations on Σ. The evaluation is
then extremely efficient but at the same time no stability proof is available.

In a first step, we study the discretization of the boundary conditions ABCM1,T
and ABCM2,T based on a Taylor expansion. Next, we will consider the discretiza-
tion of the boundary conditions ABCM1,P and ABCM2,P related to Padé approxi-
mants.

3.2. Discretization of the boundary conditions ABCM1,T and ABCM2,T
The boundary conditions ABCM·,T involve fractional derivatives and integral

operators which are discretized by using discrete convolutions of the operators
∂

1/2
t , I1/2

t and It [3, 4, 7]. If {fn}n∈N is a sequence of complex numbers ap-
proximating {f(tn)}n∈N, then the approximations of ∂1/2

t f(tn), I1/2
t f(tn) and

It f(tn) with respect to the Crank-Nicolson scheme for a time step ∆t are given
by the numerical quadrature formulas

∂
1/2
t f(tn) ≈

√
2

∆t

n∑
k=0

βn−kf
k =

√
2

∆t
(βk ? fk)n, (28)

I
1/2
t f(tn) ≈

√
∆t
2

n∑
k=0

αn−kf
k =

√
∆t
2

(αk ? fk)n, (29)

It f(tn) ≈ ∆t
2

n∑
k=0

γn−kf
k =

∆t
2

(γk ? fk)n, (30)

where the sequences (αn)n∈N, (βn)n∈N and (γn)n∈N are
(α0, α1, α2, α3, α4, α5, . . .) = (1, 1, 1

2 ,
1
2 ,

3
8 ,

3
8 , . . .),

βk = (−1)kαk, ∀k ≥ 0,
(γ0, γ1, γ2, γ3, . . .) = (1, 2, 2, 2, . . .).

(31)

We denote by bn+1 the convolution product (βk?vk)n+1, also written βn+1?v
n+1.

Proposition 3.1. The semi-discrete Crank-Nicolson scheme for (25) with bound-
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ary conditions ABCM2,T is given by
2i
∆t

vn+1 + ∆vn+1 +Wn+1 vn+1 =
2i
∆t

un, on Ω,

∂nv
n+1 + ΛM,n+1

2,T vn+1 = 0, on Σ,

u0 = u0, on Ω,

(32)

for n = 0, . . . , N − 1. The semi-discrete operators ΛM,n+1
2,T , M ∈ {1, 2, 3, 4}, are

given by

Λ1,n+1
2,T vn+1 = e−iπ/4

√
2

∆t
bn+1, (33)

Λ2,n+1
2,T vn+1 = Λ1,n+1

2,T vn+1 +
κ

2
vn+1, (34)

Λ3,n+1
2,T vn+1 = Λ2,n+1

2,T vn+1 (35)

− eiπ/4
√

∆t
2

(
κ2

8
an+1

0 +
1
2
an+1

2 +
1
2

sg(Wn+1)
√
|Wn+1| an+1

V

)
,

Λ4,n+1
2,T vn+1 = Λ3,n+1

2,T vn+1 + i
∆t
2

(
1
2
∂s(κdn+1

1 ) +
κ3 + ∂2

sκ

8
dn+1

0

−1
4

sg(∂nWn+1)
√
|∂nWn+1| dn+1

V

)
, (36)

with the following notations

bn+1 =
(
βk ? v

k
)
n+1

, (37)

an+1
µ =

(
αk ?

(
∂µs v

k
))
n+1

, µ ∈ {0, 1, 2}, (38)

an+1
V =

(
αk ?

(√
|W k| vk

))
n+1

, (39)

dn+1
µ =

(
γk ?

(
∂µs v

k
))
n+1

, µ ∈ {0, 1}, (40)

dn+1
V =

(
γk ?

(√
|∂nW k| vk

))
n+1

. (41)

In order to build a discretization of ABCM1,T , we have to consider the various
terms coming from the phase function transformation and to approximate the
phase function V by

W n+1 = Vn+1/2 =
Vn+1 + Vn

2
.

Proposition 3.2. The semi-discrete Crank-Nicolson scheme for (25) with bound-
ary conditions ABCM1,T is given by

2i
∆t

vn+1 + ∆vn+1 +Wn+1vn+1 =
2i
∆t

un, on Ω,

∂nv
n+1 + ΛM,n+1

1,T vn+1 = 0, on Σ,

u0 = u0, on Ω,

(42)
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for n = 0, . . . , N − 1, where the semi-discrete operators ΛM,n+1
1,T , M ∈ {2, 3, 4},

are given by

Λ2,n+1
1,T vn+1 = e−iπ/4

√
2

∆t
eiW

n+1
b̃n+1 +

κ

2
vn+1, (43)

Λ3,n+1
1,T vn+1 = Λ2,n+1

1,T vn+1 − eiπ/4
√

∆t
2

(
κ2

8
eiW

n+1
ãn+1

0 (44)

+
1
2
eiW

n+1
ãn+1

2 + i(∂sW n+1)eiW
n+1

ãn+1
1

+
1
2
(
i∂2
sW

n+1 − (∂sW n+1)2
)
eiW

n+1
ãn+1

0

)
,

Λ4,n+1
1,T vn+1 = Λ3,n+1

1,T vn+1 + i

(
1
2
eiW

n+1
∂s(κd̃n+1

1 ) (45)

+
κ3 + ∂2

sκ

8
eiW

n+1
d̃n+1

0 +
i

2
(∂sκ)(∂sW n+1)eiW

n+1
d̃n+1

0

− i
4

sg(∂nWn+1)
√
|∂nWn+1| eiW

n+1
d̃n+1
V

)
.

In the above notations, we have set

b̃n+1 =
(
βk ?

(
e−iW

k

vk
))

n+1
, (46)

ãn+1
µ =

(
αk ?

(
∂µs

(
e−iW

k

vk
)))

n+1
, µ ∈ {0, 1, 2}, (47)

d̃n+1
µ =

(
γk ?

(
∂µs

(
e−iW

k

vk
)))

n+1
, µ ∈ {0, 1}, (48)

d̃n+1
V =

(
γk ?

(
e−iW

k
√
|∂nW k| vk

))
n+1

. (49)

Remark 3.1. . In the case of radially symetrical potential V = V (r, t) and
domain Ω, the operators Λ3,n+1

1,T and Λ4,n+1
1,T have a simplified form

Λ3,n+1
1,T vn+1 = Λ2,n+1

1,T vn+1 − eiπ/4
√

∆t
2

(
κ2

8
eiW

n+1
ãn+1

0 (50)

+
1
2
eiW

n+1
ãn+1

2

)
,

Λ4,n+1
1,T vn+1 = Λ3,n+1

1,T vn+1 + i

(
1
2
eiW

n+1
∂s(κd̃n+1

1 ) (51)

+
κ3 + ∂2

sκ

8
eiW

n+1
d̃n+1

0 − i

4
sg(∂nWn+1)

√
|∂nWn+1| eiW

n+1
d̃n+1
V

)
,
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with the modified coefficients ãn+1
µ and d̃n+1

µ

b̃n+1
µ =

(
αk ?

(
e−iW

k

∂µs v
k
))

n+1
, µ ∈ {0, 1, 2}, (52)

d̃n+1
µ =

(
γk ?

(
e−iW

k

∂µs v
k
))

n+1
, µ ∈ {0, 1}, (53)

since ∂sW n+1 = 0.

3.3. Stability results for the Crank-Nicolson scheme associated with the dis-
cretized boundary conditions ABCM1,T and ABCM2,T

We derive in this section a priori estimates for the systems (32) and (42).
To prove these results, it is necessary to recall that the ABCs are obtained
through symbolic calculus linked to underlying pseudodifferential operators. As
already said, their validity requires a condition in the quasi hyperbolic zone H.
This condition is nothing but a relation on the positivity of the real part of the
symbol σ(PΣ) of the Schrödinger operator on the boundary

PΣ : f 7→ PΣ(f) = i∂tf + ∆Σf.

It is obtained by
F(s,t) (PΣ(f)) = σ(PΣ)F(s,t)(f),

where σ(PΣ) = −τ − ξ2 and F(s,t) denotes the Fourier transform with respect
to the variables s and t. The restriction to the quasi hyperbolic zone H also
reads: Re(−τ−ξ2) > 0 and Im(−τ−ξ2) = 0. This definition is only available in
the continuous framework. In the discrete case, we have to adapt this definition
to the Crank-Nicolson scheme.

The semi-discrete operator P̃Σ associated with PΣ and linked to the Crank-
Nicolson scheme is

P̃Σ : f 7→
(
i
f(tn+1)− f(tn)

∆t
+ ∆Σ

f(tn+1) + f(tn)
2

)
n∈N

.

We identify its associated symbol replacing the Fourier transform used in the
continuous framework by the Z-transform (see Annex A)

FsZ
(
P̃Σ(f)

)
= σsd(P̃Σ)FsZ(f(tn))(z),

with

σsd

(
P̃Σ

)
=

i

∆t
(z − 1)− ξ2

2
(z + 1) =

z + 1
2

(
2i
∆t

z − 1
z + 1

− ξ2

)
. (54)

The property that the quadruplet (s, t, ξ, τ) belongs to the quasi hyperbolic
zone H is: −τ − ξ2 > 0, which means that Re (σ(PΣ)) > 0 and Im (σ(PΣ)) = 0.
Similarly, we define the semi-discrete quasi hyperbolic zone, denoted by Hsd,
whose characterization is linked to the semi-discrete symbol of P̃Σ.
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Definition 3.1. The semi-discrete quasi hyperbolic zone Hsd is the set of quadru-
plets (s, n, ξ, z) ∈ R× N× R× C satisfying

Re
(

2i
∆t

z − 1
z + 1

− ξ2

)
> 0 and Im

(
2i
∆t

z − 1
z + 1

− ξ2

)
= 0.

Therefore, the characterization σ(PΣ) ∈ R+∗ is transposed to the semi-
discrete domain as 2i

∆t
z−1
z+1 − ξ

2 ∈ R+∗.

Let us begin with the approximation of the boundary condition ABCM2,T . We
have the following result:

Theorem 3.1. Let (un)0≤n≤N be a solution of the system
i
un+1 − un

∆t
+ ∆vn+1 +Wn+1 vn+1 = 0, in Ω,

∂nv
n+1 + ΛM,n+1

2,T vn+1 = 0, on Σ, for M ∈ {2, 3, 4},
u0 = u0, in Ω.

(55)

For M = 2, we have the following energy inequality

∀n ∈ {0, . . . , N}, ‖un‖L2(Ω) ≤ ‖u0‖L2(Ω). (56)

Moreover, if sg(W k) = 1 on Σ for any time tk, then the inequality (56) remains
satisfied for M = 3. In addition, if κ > 0, κ3 + ∂2

sκ < 0 and sg(∂nW k) = 1 on
Σ, then this inequality is also satisfied for M = 4.

Remark 3.2. . We only state uniqueness results in Theorem 3.1. Existence
should be also studied to get a complete Theorem.

Proof. A classical algebraic manipulation leads to the identity

‖uP ||2L2(Ω) − ‖u
0‖2L2(Ω)

2∆t
= Re

(
P−1∑
n=0

∫
Σ

ivn+1∂nv
n+1dΣ

)
= Re

(
P−1∑
n=0

An

)
,

(57)
where An denotes the term

∫
Σ
ivn+1∂nv

n+1dΣ.
To prove (56), one needs to show that the right hand side of (57) is negative.

Since sg(Wn+1) = sg(∂nWn+1) = 1 on Σ for all times tn+1 and v0 has compact

12



support in Ω, a simple computation allows us to write

P−1∑
n=0

∫
Σ

ivn+1∂nv
n+1dΣ = −eiπ/4

√
1

2∆t

∫
Σ

P∑
n=0

bnvndΣ

− i

2

∫
Σ

κ

P∑
n=0

|vn|2 dΣ

+ ieiπ/4
√

∆t
2

∫
Σ

P∑
n=0

(
i

∆t
bnvn +

1
2
an0 ∂

2
sv
n

)
dΣ

+ ieiπ/4
√

∆t
2

∫
Σ

κ2

8

P∑
n=0

an0 v
ndΣ

+ ieiπ/4
√

∆t
2

∫
Σ

1
2

P∑
n=0

anV
√
|Wn| vndΣ

− ∆t
2

∫
Σ

κ

2

P∑
n=0

dn1∂sv
ndΣ

+
∆t
2

∫
Σ

κ3 + ∆κ

8

P∑
n=0

dn0 v
ndΣ

− ∆t
2

∫
Σ

1
4

sg(∂nW 0)
P∑
n=0

dnV
√
|∂nWn| vndΣ.

(58)

The proof mainly relies on Lemmas A.1 and A.2 (see Annex A). Let us apply
them to the first term of the right hand side of (58). One has

Qβ :=
P∑
n=0

vnbn =
P∑
n=0

(
vn

n∑
k=0

βn−kv
k

)
=

P∑
n=0

vn(βn ? vn).

Thanks to Lemma A.2, −eiπ/4Qβ has a negative real part. The study of the
other terms is quite similar except for the third one for which the proof is more
delicate. We study the real part of the quantity

B3 = ieiπ/4
√

∆t
2

∫
Σ

P∑
n=0

(
i

∆t
bnvn +

1
2
an0 ∂

2
sv
n

)
dΣ.

Using the Plancherel’s theorem for the Fourier transform along the curvilinear
abscissa s (with covariable ξ), we get

B3 = ieiπ/4
√

∆t
2

∫
R

P∑
n=0

(
i

∆t
b̂nv̂n − ξ2

2
ân0 v̂

n

)
dξ.

13



By using Lemma A.1 (see Annex A), we have

B3 = ieiπ/4
√

∆t
2

∫
R

1
2π

∫ π

−π

[
i

∆t
β̂(eiω)− ξ2

2
α̂(eiω)

] ∣∣∣∣∣
P∑
n=0

v̂ne−iωn

∣∣∣∣∣
2

dω,

which reduces to

B3 = ieiπ/4
√

∆t
2

∫
R

1
2π

∫ π

−π

[
i

∆t

√
eiω − 1
eiω + 1

− ξ2

2

√
eiω + 1
eiω − 1

]
·

∣∣∣∣∣
P∑
n=0

v̂ne−iωn

∣∣∣∣∣
2

dω. (59)

The study of the sign of the real part of B3 is thus reduced to the study of the
sign of the real part of the complex function R(z) defined by

R(z) = ieiπ/4

(
i

∆t

√
z − 1
z + 1

− ξ2

2

√
z + 1
z − 1

)
(60)

on the unit circle. Another equivalent form is

R(z) =
i

2
eiπ/4

√
z + 1
z − 1

(
2i
∆t

z − 1
z + 1

− ξ2

)
. (61)

Therefore, the function R(z) can be written as

R(z) = σ(z)
(

2i
∆t

z − 1
z + 1

− ξ2

)
,

where σ is the function defined by

σ(z) =
i

2
eiπ/4

√
z + 1
z − 1

.

Since we are working in the semi-discrete quasi hyperbolic zone Hsd, we have
2i
∆t

z−1
z+1 − ξ

2 > 0. The problem is therefore reduced to the study of the real part

of the function σ on the unit circle. But for ω ∈ (−π;π), one has
√

eiω+1
eiω−1 =√

−i cotan
(
ω
2

)
. Hence, the application z 7→

√
z+1
z−1 maps the unit circle onto

e−iπ/4R+∪ eiπ/4R+. Thus, we have that Re (σ(z)) ≤ 0 when z = eiω belongs to
the unit circle. This proves that the term B3 given by (59) has a negative real
part.

For the boundary conditions obtained by the Phase Function Transforma-
tion, we have an equivalent theorem but under stronger hypothesis on the po-
tential and the computational domain.
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Theorem 3.2. Let (un)0≤n≤N be a solution of the system
i
un+1 − un

∆t
+ ∆vn+1 +Wn+1 vn+1 = 0, in Ω,

∂nv
n+1 + ΛM,n+1

1,T vn+1 = 0, on Σ, for M ∈ {2, 3, 4},
u0 = u0, in Ω.

(62)

For M = 2, we have the following energy inequality

∀n ∈ {0, . . . , N}, ‖un‖L2(Ω) ≤ ‖u0‖L2(Ω). (63)

Moreover, if the potential V and the computational domain Ω are radially symet-
rical, then the inequality (56) remains satisfied for M = 3. Finally, if sg(∂nW k)
is time independent on Σ, then this inequality is also satisfied for M = 4.

We omit the proof which is similar to the previous one. We refer to [16] for
more details.

Remark 3.3. . Let us point out here that the stability results in Theorems
3.1 and 3.2 exactly correspond to well-posedness results obtained in [6] at the
continuous level under the same kind of assumptions.

3.4. Discretization of the boundary conditions ABCM1,P and ABCM2,P
An alternative approach to discrete convolutions consists in approximating

the square-root operator
√
i∂t + V by using rational functions and more pre-

cisely using the m-th order Padé approximants [22]

√
z ≈ Rm(z) = am0 +

m∑
k=1

amk z

z + dmk
=

m∑
k=0

amk −
m∑
k=1

amk d
m
k

z + dmk
, (64)

where the coefficients (amk )0≤k≤m and (dmk )1≤k≤m are given by

am0 = 0 , amk =
1

m cos2
(

(2k+1)π
4m

) , dmk = tan2

(
(2k + 1)π

4m

)
. (65)

Formally,
√
i∂t + V is approximated by

Rm(i∂t + V ) =
m∑
k=0

amk −
m∑
k=1

amk d
m
k (i∂t + V + dmk )−1. (66)

Let us begin by applying this technique to the absorbing boundary conditions
ABCM2,P coming from the direct strategy

∂nu− i
√
i∂t + ∆Σ + V u+

κ

2
u− κ

2
(i∂t + ∆Σ + V )−1 ∆Σu = 0, on Σ.
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By using (66), we get

∂nu− i
m∑
k=0

amk u+ i

m∑
k=1

amk d
m
k (i∂t + ∆Σ + V + dmk )−1

u+
κ

2
u

− κ

2
(i∂t + ∆Σ + V )−1 ∆Σu = 0.

To write a suitable form of the equation in view of an efficient numerical treat-
ment, we classically introduce m+ 1 auxiliary functions ϕk, for 1 ≤ k ≤ m, and
ψ (see Lindmann [21]) as follows

ϕk = (i∂t + ∆Σ + V + dmk )−1
u,

and
ψ = (i∂t + ∆Σ + V )−1 ∆Σu.

The corresponding full absorbing boundary condition is written as a system
associated to the condition ABC2

2,P

∂nu− i
m∑
k=0

amk u+ i

m∑
k=1

amk d
m
k ϕk +

κ

2
u− κ

2
ψ = 0, on ΣT ,

i∂tϕk + ∆Σϕk + V ϕk + dmk ϕk = u, on ΣT , for 1 ≤ k ≤ m,

i∂tψ + ∆Σψ + V ψ = ∆Σu, on ΣT ,

ϕk(x, 0) = 0, 1 ≤ k ≤ m, ψ(x, 0) = 0, for x ∈ Σ.

(67)

Now, we have to discretize the above system. The semi-discretization of the
interior scheme remains the same as before (see Eq. (27)) and consequently
(67) becomes for 0 ≤ n ≤ N

∂nv
n+1 − i

m∑
k=0

amk v
n+1 +

κ

2
vn+1 + i

m∑
k=1

amk d
m
k ϕ

n+1/2
k − κ

2
ψn+1/2 = 0,(

2i
∆t

+ ∆Σ +Wn+1 + dmk

)
ϕ
n+1/2
k − vn+1 =

2i
∆t

ϕnk , 1 ≤ k ≤ m,(
2i
∆t

+ ∆Σ +Wn+1

)
ψn+1/2 −∆Σv

n+1 =
2i
∆t

ψn,

ϕk(x, 0) = 0 for 1 ≤ k ≤ m, ψ0(x) = 0 on Σ,

(68)

where ϕn+1/2
k = ϕn+1

k +ϕn
k

2 and ψn+1/2 = ψn+1+ψn

2 . In this system, the functions
ϕk and ψ are defined on the closed curve Σ.
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We can now apply the same technique to the conditions ABC2
1,P and obtain

∂nu− ieiV
√
i∂t + ∆Σ

(
e−iVu

)
+
κ

2
u

+ (∂sV)eiV (i∂t + ∆Σ)−1/2
∂s
(
e−iVu

)
− κ

2
eiV (i∂t + ∆Σ)−1 ∆Σ

(
e−iVu

)
= 0.

The first terms of this equation are treated in a way similar as for ABC2
2,P .

We have to introduce new auxiliary functions for lower order terms. The term
(∂sV)eiV (i∂t + ∆Σ)−1/2

∂s
(
e−iVu

)
is treated in two steps. First, we introduce

a new auxiliary function η defined on ΣT by

(i∂t + ∆Σ)1/2
η = ∂s(e−iVu).

The second step consists in approximating the square-root operator by Padé
approximants of order m(

m∑
k=0

amk

)
η −

m∑
k=1

amk d
m
k (i∂t + ∆Σ + dmk )−1

η = ∂s(e−iVu).

Next, we consider m new auxiliary functions (θk)1≤k≤m defined on ΣT by

(i∂t + ∆Σ + dmk )−1
η = θk.

Similarly, we introduce the function ψ for the last term of ABC2
1,P , which sat-

isfies on Σ the relation i∂tψ + ∆Σψ = ∆Σ

(
e−iVu

)
. Thus, we get a system

associated to the condition ABC2
1,P

∂nu− i
m∑
k=0

amk u+
κ

2
u+ ieiV

m∑
k=1

amk d
m
k ϕk + (∂sV)eiVη

− κ

2
eiVψ = 0, on ΣT ,

(i∂t + ∆Σ + dmk )ϕk = e−iVu, on ΣT , for 1 ≤ k ≤ m,(
m∑
k=0

amk

)
η −

m∑
k=1

amk d
m
k θk = ∂s

(
e−iVu

)
, on ΣT ,

(i∂t + ∆Σ + dmk ) θk = η, on ΣT , for 1 ≤ k ≤ m,
(i∂t + ∆Σ)ψ = ∆Σ

(
e−iVu

)
, on ΣT ,

ϕk(x, 0) = θk(x, 0) = 0 on Σ, for 1 ≤ k ≤ m,
ψ(x, 0) = 0 on Σ.
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We deduce the following discretization

∂nv
n+1 − i

m∑
k=0

amk v
n+1 +

κ

2
vn+1 + ieiW

n+1
m∑
k=1

amk d
m
k ϕ

n+1/2
k

+ ∂sW
n+1eiW

n+1
ηn+1/2 − κ

2
eiW

n+1
ψn+1/2 = 0,(

2i
∆t

+ ∆Σ + dmk

)
ϕ
n+1/2
k − e−iW

n+1
vn+1 =

2i
∆t

ϕnk , 1 ≤ k ≤ m,(
m∑
k=0

amk

)
ηn+1/2 −

m∑
k=1

amk d
m
k θ

n+1/2
k = ∂s

(
e−iW

n+1
vn+1

)
,

on ΣT ,(
2i
∆t

+ ∆Σ + dmk

)
θ
n+1/2
k − ηn+1/2 =

2i
∆t

θnk , 1 ≤ k ≤ m,(
2i
∆t

+ ∆Σ

)
ψn+1/2 −∆Σ

(
e−iW

n+1
vn+1

)
=

2i
∆t

ψn,

ϕ0
k(x) = θ0

k(x) = 0 for 1 ≤ k ≤ m, ψ0(x) = 0 on Σ.
(69)

Remark 3.4. . When the potential and the computational domain are radially
symetrical, the condition ABC2

1,P becomes

∂nu− ieiV
√
i∂t + ∆Σ

(
e−iVu

)
+
κ

2
u

− κ

2
eiV (i∂t + ∆Σ)−1 ∆Σ

(
e−iVu

)
= 0, on ΣT . (70)

This leads to significant simplifications for the numerical treatment. In this
case, the discretization reads

∂nv
n+1 − i

m∑
k=0

amk v
n+1 +

κ

2
vn+1 + ieiW

n+1
m∑
k=1

amk d
m
k ϕ

n+1/2
k

− κ

2
eiW

n+1
ψn+1/2 = 0,(

2i
∆t

+ ∆Σ + dmk

)
ϕ
n+1/2
k − e−iW

n+1
vn+1 =

2i
∆t

ϕnk ,

1 ≤ k ≤ m,(
2i
∆t

+ ∆Σ

)
ψn+1/2 −∆Σ

(
e−iW

n+1
vn+1

)
=

2i
∆t

ψn,

ϕk(x, 0) = 0 for 1 ≤ k ≤ m, ψ0(x) = 0 on Σ.

(71)

Like in the one-dimensional case [4], it is not possible to give a proof of
stability for these ABCs discretized with Padé approximants. A point of inter-
est would be the study of stability for ABCs discretized using other rational
approximations of the square root.
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4. Finite element approximation and numerical results

The variational formulation for the semi-discretization (27) of the Schrödin-
ger equation (1) consists in seeking the unknown function vn+1 in the Sobolev
space H1(Ω) such that for any test function ψ ∈ H1(Ω), one has∫

Ω

(
2i
∆t

vn+1ψ −∇vn+1∇ψ +Wn+1vn+1ψ

)
dΩ

+
∫

Σ

∂nv
n+1ψdΣ =

∫
Ω

2i
∆t

unψdΩ (72)

The spatial approximation is realized by using the classical P1 finite element
space of piecewise linear functions

Vh =
{
ϕh ∈ H1(Ωh), ϕh|T ∈ P1,∀T ∈ Th

}
,

where the bounded computational polygonal domain Ωh = ∪T∈Th
T is con-

structed with the help of a regular triangulation Th. The curvature approxima-
tion is developed by a simple procedure [1] based only on the knowledge of the
initial mesh. The finite element approximation space Vh being a subspace of
H1(Ωh), the stability of the fully discrete scheme is simply a consequence of the
stability of the semi-discrete scheme. At each time step, the resulting complex-
valued sparse and symmetrical linear system is solved by a biconjugate gradient
stabilized solver accelerated by an incomplete LU factorization preconditioner.
The convergence is reached in only a few iterations.

We split our analysis in two parts, respectively for time independent and
time dependent potentials. In both cases, we restrict ourselves to computations
for which we have access to exact solutions. This allows us to compute error
norm between an exact solution denoted by uex(x, y, t) in the sequel and a
numerical solution unum(x, y, t) equal to un(x, y) ∈ Vh when t ∈ [tn, tn+1). An
exact solution is given in term of solutions to the free Schrödinger equation{

i∂tv + ∆v = 0, (x, y) ∈ R2, t > 0
v(x, y, 0) = v0(x, y), (x, y) ∈ R2,

(73)

where v0 ∈ L2(R2). It is well-known that an exact solution of (73) can be
obtained by convolution with the Green’s kernel. When v0 is a gaussian

v0(x, y) = e−L(x2+y2)+i(k1x+k2y), (74)

where L > 0 and k = (k1, k2)T is the wave vector, the exact solution is given by

v(x, y, t) =
i

i− 4Lt
×

exp
(
−i L(x2 + y2) + i(k1x+ k2y) + it(k2

1 + k2
2)

i− 4Lt

)
. (75)
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4.1. Time independent potentials
The numerical simulations in this subsection are made for the repulsive

quadratic potential V1(x, y, t) = ω2(x2 + y2) (see Figures 3(a) and 3(b)). An
explicit solution can be computed [12] in term of solution v of (73) by

u(x, y, t) = exp
(
iω

2
(x2 + y2) tanh (2ωt)

)
v(x̃, ỹ, t̃)

cosh (2ωt)
(76)

where x̃ = x/ cosh (2ωt), ỹ = y/ cosh (2ωt) and t̃ = tanh (2ωt)/(2ω). The
computational domains Ω are p-balls

Bp(R) =
{

(x, y) ∈ R2| |x|p + |y|p ≤ Rp
}
, 2 ≤ p <∞,

which can be parameterized with respect to the angle θ by the relations

x(θ) = R | cos θ|2/p · sg(cos θ),

y(θ) = R | sin θ|2/p · sg(sin θ).

Obviously, we recover the usual circle of radius R for p = 2. The interest of such
a computational domain is that it becomes close to a square for large enough
values of p while being smooth. We will use in this paper the two computational
domains Ω1 = B2(0, 2.5) and Ω2 = B8(0, 2.5) represented on Figure 2. In all our
computations, the final time is T = 1. The main difference in the computations
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(a) Ω1 = B2(0, 2.5)
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(b) Ω2 = B8(0, 2.5)

Figure 2: Computational domains Ω1 and Ω2

made on domain Ω1 or Ω2 is that the potential and curvature do not remain
constant on their boundaries as we can notice it on Figure 3.

For a domain Ω2 and a potential which are both radial, many simplifications
occur in ABCM1,T and ABCM1,P for the gauge change approach. Indeed, the terms
related to the derivative of V with respect to the curvilinear abscissa vanish in
ABC3

1,T , ABC4
1,T and ABC2

1,P , and the implementation greatly simplifies since
the functions e±iV are constant on Σ. When the domain or/and the potential
are not symmetrical, no simplification can be made. As a consequence, the
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computational cost is much more important, in particular for ABCM1,T . The
reason is that the discrete convolution imposes that the n finite element matrices
depending on e−iV must be rebuilt at the n-th time iteration.

The first experiments are made for the domain Ω1 with L = 4 and k =
(0, 0)T . The value of ω is 0.5. For this test case, we fix ∆t = 10−3. The domain
Ω1 is meshed with 423k = 423 000 triangles except for Fig. 5. In order to show
the behavior of the various absorbing boundary conditions with respect to their
order, we first plot the logarithm of the error norm ‖uex(·, t)− unum(·, t)‖L2(Ω1)

on Figure 4. As expected, the error decays with the order of the ABCs. Another
interesting feature can be observed on Figure 5 where we report the evolution of
the error with respect to the mesh size. We only keep the different highest order
ABCs. We remark that the error always reaches the same limit for the different
mesh sizes of Ω1. Finally, we plot on Figure 6 the error norm for the best order
of the different families of ABCs. The more convincing ABC is clearly the one
obtained by the Taylor approximation in the framework of Strategy 1. The two
Padé approaches give the same results in both strategies. The Taylor approach
in Strategy 2 leads to the worst approximation. For completeness, we test the
best ABC, namely ABC4

1,T , for long time simulations for a triangulation of Ω1

involving 26k triangles. Indeed, from the previous curves, one may think that
the error grows with respect to time. This is in fact not the case as it can be
seen on Figure 7. The error remains almost constant for longer computational
times.

The next simulations are performed on the domain Ω2 which is meshed with
23k triangles. The time step ∆t is chosen as 2 · 10−3, the value of L remains
unchanged but the wave vector is now k = (3, 3)T and the value of ω is 1.
This choice insures that the solution propagates in the direction of the lower
left part of the domain which has the strongest curvature. Again, we plot the
error norm for the various ABCs on Figure 8 and a comparison on Figure 9.
The results confirm what we have already observed for Ω1 but some differences
appear concerning the behavior of the Padé approximation. The Padé approach
for Strategy 1 gives better results than for Strategy 2. The best approach still
consists in using ABC4

1,T . We next show on Figure 10 the evolution of the
contour plot of the logarithm of |uex(·, .)| and |unum(·, .)| for ABC4

1,T which is
satisfactory.

4.2. Time dependent potentials
As for the previous subsection, we have access to an explicit solution for

V2(x, y, t) = f(t)(x2 + y2) thanks to [12]. To this aim, we define two functions
µ and ν solutions of the second-order ordinary differential equation

g′′(t)− 4f(t)g(t) = 0

completed with initial data. Thereby, the function µ is solution to this ODE
with µ(0) = 0 and µ′(0) = 1. Considering ν, one takes ν(0) = 1 and ν(1) = 0.
Then, the solution is given by

u(x, y, t) =
1
ν(t)

exp
(
i

4
ν′(t)
ν(t)

x2 + y2

ν(t)2

)
v

(
x

ν(t)
,
y

ν(t)
,
µ(t)
ν(t)

)
.
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Figure 4: Evolution of the error norm log10
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with respect to
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Figure 5: Evolution of the error norm log10

“
‖uex(·, t)− unum(·, t)‖L2(Ω1)

”
with respect to

the mesh size.
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If the function f is linear, f(t) = αt, the solution is explicitely given by using
Airy’s special functions Ai and Bi. Then, setting, t̃ = 22/3α1/3t, we get

µ(t) = 21/3 π

6α1/3Γ(2/3)

(
31/3Bi(t̃)− 35/6Ai(t̃)

)
and

ν(t) =
1
2

Γ(2/3)
(

32/3Ai(t̃) + 31/6Bi(t̃)
)
.

The numerical experiments are made on Ω1 meshed with 105k triangles. The
time step ∆t is chosen as 2 · 10−3 and the function f is f(t) = (1− cos (2πt))/2.
The parameters of the solution are L = 4, k = (0, 0)T and ω = 1. As in the
previous subsection, we plot the evolution of the error norm for the different
ABCs on Figure 11 and compare the results on 12. The conclusions remain
unchanged and the best ABC is still ABC4

1,T .
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Figure 11: Evolution of the error norm log10

“
‖uex(·, t)− unum(·, t)‖L2(Ω1)

”
with respect to

the ABCs order.
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5. Conclusion

The aim of this paper was to propose suitable discretization schemes of
ABCs proposed in [6]. Furthermore, stability results have been proved in some
cases. Numerical simulations are provided to compare the different kinds of
ABCs. It appears that the most accurate ABC is ABC4

1,T which is related to
the application of Taylor’s expansion to the first strategy of construction of
ABCs based on a gauge change. Acceleration of the evaluation of the fractional
operators [25] involved in the definition of this ABC should strongly improve
the overall computational cost of their application but is however beyond the
scope of our paper. Finally, let us remark that our developments can be a
priori extended to the three-dimensional case for smooth surfaces and by using
related differential geometry tools. However, the computation of the symbols,
already heavy in the two-dimensional situation, would be very long and tedious.
Furthermore, the numerical simulations would also bring technical challenges,
linked e.g. to mesh generation and the resolution of large scale linear systems.

A. Z-transform: technical annex

For the sake of clarity, we precise some notations and results about the
Z-transform of a discrete signal [14].

Definition A.1. Let (fn)n∈N be a discrete signal. We call Z-transform of (fn),
and we denote by Z(fn) or f̂ , the function of the z variable defined by

f̂(z) = Z(fn)(z) =
+∞∑
n=0

fnz
−n, for |z| > R̂f , (77)

where R̂f denotes the convergence radius of the series f̂ which is defined by

R̂f = inf

{
R > 0 ;

∑
n

fnR
−n < +∞

}
. (78)
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Thereby, R̂f is the inverse of the convergence radius of the power series
∑
fnz

n.

We denote by ? the usual convolution product

an ? b
n = (a ? b)n =

n∑
k=0

akb
n−k.

Let us recall some classical properties of the Z transform.

Proposition A.1. Let (fn)n∈N and (gn)n∈N be two discrete signals with con-
vergence radius R̂f and R̂g, respectively. Then, the following results hold

1. Z(fn+1) = zf̂ − zf(0),
2. Z(fn+1 ± fn) = (z ± 1)f̂(z)− zf(0),
3. Z(fn ? gn) = f̂(z)ĝ(z), for |z| > max (R̂f , R̂g).

We also have the following lemma used in the stability proofs of the paper.

Lemma A.1. Let (up)p∈N and (hp)p∈N be two sequences. We define the se-
quence (yp)p∈N by

yp =
p∑
k=0

hkup−k,

and by ĥ the Z-transform of (hp)p∈N, for which we assume that Rĥ ≥ 1. Let
H(E) be the Hardy space on E = {z ∈ C, |z| > 1}

H(E) =
{
H holomorphic on E s.t. sup

r>1

∫ π

−π

∣∣H(reiω)
∣∣ dω < +∞

}
.

If ĥ ∈ H(E), then one has

n∑
p=0

upyp =
1

2π

∫ π

−π
ĥ(eiω)

∣∣∣∣∣
n∑
p=0

upe
−iωp

∣∣∣∣∣
2

dω. (79)

Proof. Let us define, for ρ ≥ 1, yp(ρ) =
∑p
k=0 hkρ

−kup−k. We fix n < ∞
and consider the Laurent polynomials ŷρ(z) :=

∑n
p=0 yp(ρ)z−p and û(z) :=∑n

p=0 upz
−p. By using the Cauchy product, one has for all z s.t. |z| > ρ

ĥ(ρz) · û(z) = ĥρ(z) +
∞∑

p=n+1

 p∑
k=p−n

hkρ
−kup−k

 z−p.

In particular, this is true for the unit circle. We compute the L2 scalar product
on the unit circle for the measure 1

2πdω. The orthogonality of zp implies that

〈
û, ĥ · û

〉
= 〈û, ŷρ〉 =

n∑
p=0

upyp(ρ).
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The left hand side of this equality is reduced to

1
2π

∫ π

−π
ĥ(ρeiω)

∣∣∣∣∣
n∑
p=0

upe
−iωp

∣∣∣∣∣
2

dω.

But, ĥ(ρeiω) converges to ĥ(eiω) in L1 when ρ→ 1+. Therefore, since limρ→1+ yp(ρ) =
yp, this ends the proof of Lemma A.1.

This lemma is mainly used in the following result.

Lemma A.2. Let (αn)n, (βn)n and (γn)n be the sequences given by (31), and
(ϕk)k∈N a sequence of complex numbers. We have the following properties:

Qα =
n∑
p=0

ϕp
p∑
k=0

αp−kϕ
k ∈ eiπ/4R+ ∪ e−iπ/4R+, (80)

Qβ =
n∑
p=0

ϕp
p∑
k=0

βp−kϕ
k ∈ eiπ/4R+ ∪ e−iπ/4R+, (81)

Qγ =
n∑
p=0

ϕp
p∑
k=0

γp−kϕ
k ∈ {Re(z) ≥ 0}. (82)

Proof. The proof of the result for the terms Qα and Qβ mainly relies on Lemma
A.1 (see Annex A). Let us consider here Qα (the proof is similar for Qβ). The
Z-transform of the sequence (αn)n evaluated on the unit circle for ω ∈ (−π, π)

is given by α̂(eiω) =
√

eiω+1
eiω−1 ∈ L1(−π, π). It is easy to see that α̂ ∈ H(E).

Therefore, Lemma A.1 holds and we have

Qα =
1

2π

∫ π

−π

√
eiω + 1
eiω − 1

∣∣∣∣∣
P∑
n=0

vne−iωn

∣∣∣∣∣
2

dω.

But for ω ∈ (−π;π), one has
√

eiω+1
eiω−1 =

√
i tan

(
ω
2

)
. Hence, the application

z 7→
√

z+1
z−1 maps the unit circle onto eiπ/4R+ ∪ e−iπ/4R+. This implies that

Qα ∈ eiπ/4R+ ∪ e−iπ/4R+.

This proof cannot be extended to Qγ since the Z-transform of the sequence
(γn)n evaluated on the unit circle for ω ∈ (−π, π) does not belong to H(E).
We therefore proceed in a different way. The term Qγ can be interpreted as an
hermitian form

Qγ =
n∑
p=0

ϕp (γp ? ϕp) = tϕAϕ = 〈ϕ, Aϕ〉
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where ϕ is the vector with size n+1 and complex coefficients ϕ = (ϕ0, · · · , ϕn)T

and A designates the real coefficients matrix of size (n+ 1)× (n+ 1) defined by

A =



1 0 . . . . . . 0

2 1
. . .

...

2 2 1
. . .

...
...

. . . . . . 0
2 . . . . . . 2 1


.

Since A is positive, for any real valued vector x we have

〈x, Ax〉 ≥ 0.

We now decompose the complex valued vector ϕ as ϕ = x + iy, with x and y
two real valued vectors. We compute the hermitian product

Qγ = 〈ϕ, Aϕ〉 = 〈x, Ax〉+ 〈y, Ay〉+ i
[
〈x, Ay〉 − 〈y, Ax〉

]
.

Then we have
Re(Qγ) = 〈x, Ax〉+ 〈y, Ay〉 ≥ 0,

and
Im(Qγ) = 〈x, Ay〉 − 〈y, Ax〉,

this term being non null if x or y are not equal to zero since A is not symmetric.
Consequently, we have

Qγ ∈ {Re(z) ≥ 0}.

Acknowledgements. The authors want to thank professor J.-F. Burnol for his
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