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1 1. INTRODUCTION

We propose and compare some numerical schemes
to solve the general Schrödinger equations in
unbounded media

(1)

The wave function Ψ∞ is defined in the unbounded
domain !N (N ≥ 1). In view of a numerical computa!
tion, different solutions may be used. For example,
one usual scheme consists in splitting the Laplacian
and potential!nonlinear parts of the equation and next
solving the first linear equation, e.g., by FFT methods
and exactly integrating the second nonlinear one (see,
e.g., [1]). This kind of scheme is efficient and accurate
if the solution remains confined within the computa!
tional domain (for instance for solving the Gross–
Pitaevskii equations). Indeed, then periodic boundary
conditions may be applied for the Fourier solution
since the wave vanishes on the boundary of a large
enough computational domain. In the same situation,
other schemes may be used as for example Crank–
Nicolson schemes, Runge–Kutta methods in time
and finite difference or finite element in space. Spec!

1 The article is published in the original.
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tral techniques may be applied too (see [2] for more
details about some of these techniques). Indepen!
dently of the numerical discretization, one common
problem arises when the solution does not remain
inside the computational domain. This is for example
the case for the defocusing nonlinear cubic
Schrödinger equation, for linear Schrödinger equa!
tion with laser ionization of a one!dimensional helium
atom [3], for strong field laser atom interaction [4]…
Then, it is well!known that Dirichlet or periodic
boundary conditions on the boundary of the computa!
tional domain are not adapted. Our goal here is not to
focus on all the physical situations which can arise but
rather to propose some different ways of truncating
accurately the computational domain for (1) and
compare them numerically.

Concerning truncation methods, the case of the
free Schrödinger equation is now mastered and many
possible solutions can be developed. We refer to [5] for
an overview of the techniques. Considering now the
linear Schrödinger equation with potential requires
more developments. For example, time dependent but
space independent potentials can be considered easily
by gauge change and be treated as the free!space case.
The situation of a space variable potential is much
more complex. In some exceptional cases, explicit
exact boundary conditions may be written at the ficti!
tious boundary. However, in most situations, approxi!
mate boundary conditions must be derived. These
boundary conditions are usually called Absorbing
Boundary Conditions (ABCs) since they try to absorb
waves striking the nonphysical boundary. We refer to
[5] for such examples in the one!dimensional’ case. In
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the two!dimensional case, only a few solutions can be
found for the free! and potential cases [5]. In the non!
linear case which is much more complicate, the ABCs
at hand are often formally built from the linear case
with potential. To the best of our knowledge, only a
few papers propose some ABCs [6–11]. For the two!
dimensional case, the only strategies for simulating
ABCs have been proposed in [11, 12]. We propose and
numerically test in this paper some new ABCs for (1)
for the one! and two!dimensional cases which are
related to the ABCs for potentials developed in [13,
14]. A very common method in physics is related to
Complex Absorbing Potentials (CAPs) [15]. The idea
which is physically natural consists in adding to the
linear Schrödinger equation a complex absorbing
potential to damp the incoming wave in a surrounding
layer. We try to extend this approach here to (1). As we
will see, this approach fails to work and generates large
reflections. In particular, the choice of the absorbing
potential and its parameters is non trivial and exten!
sion to a nonlinear problem does not appear as natu!
ral. A related technique not analyzed here is the
method of Exterior Complex Scaling (see examples in
[16, 17]). A closely powerful method introduced by
Bérenger [18] for electromagnetic waves is the Per!
fectly Matched Layer (PML) approach. The method
introduces dissipation but inside the Laplacian term
and not the potential term. We apply this technique
here [19] to (1) to show its accuracy. It appears that the
accuracy that can be expected from the ABCs and
PMLs approaches is about the same, generally show!
ing an error of reflection of the order of 0.1% or less,
and is therefore useful for practical computations. For
an easier implementation of all the truncation tech!
niques, we use a semi!implicit relaxation scheme [20]
which leads to a flexible implementation of the
method. In particular, it does not require any iteration
like in a fixed point or Newton procedure for the non!
linearity. Since the PML and ABCs approaches are
accurate for the one!dimensional case, we next intro!
duce their extension to two!dimensional problems. We
detail the discretization issues and analyze their accu!

racy in the case of the propagation of a soliton in a
cubic media.

The plan of the paper is the following. In Section 2,
we introduce the ABCs, CAPs and PMLs techniques
for the one!dimensional Eq. (1). We propose some
schemes based on relaxation techniques coupled to
Finite Element Methods (FEM). Finally, we numeri!
cally test and compare the different approaches. In the
third Section, we extend our methods and discretiza!
tions to the two!dimensional nonlinear Schrödinger
equation. Some numerical simulations confirm the
accuracy of the methods. Finally, Section 4 gives a
conclusion. Let us note here that the codes corre!
sponding to Sections 2 and 3 can be, downloaded
freely at http://microwave.math.cnrs.fr/code/
index.html if the reader wants to know more about the
implementation issues of all these techniques.

2. ONE!DIMENSIONAL NONLINEAR 
PROBLEMS

2.1. Absorbing Boundary Conditions (ABCs)

The first approach that we investigate concerns
absorption at the boundary. We consider the time!
dependent one!dimensional nonlinear Schrödinger
equation with a variable potential and a nonlinear
term

(2)

We assume here that Ω := ]xl, xr[ represents a bounded
computational domain of boundary Γ := ∂Ω := {xl, xr}
and set ΩT := Ω × ]0; T[, Σt := Σ × ]0; T[ (see Fig. 1).

Furthermore, Ψ0 is supposed to be a compactly
supported initial data inside Ω. If the potential V and
nonlinear interaction f are constant outside Ω, we
respectively call them localized potential and interac!
tion. Then exact absorption at the boundary Σ can be
obtained. To write this boundary condition (also called
transparent), let us assume that the potentials are
equal to zero outside Ω. Then, it is now standard that
the boundary condition is given by

(3)

where n is the outwardly directed unit normal vector

to Σ. The operator  is the half!order derivative
operator

(4)
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Fig. 1. Computational domain ΩT and fictitious boundary
ΣT = Σ × ]0; T[.
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It can be proved that system (2)–(3) is well!posed in a
mathematical setting and that we have the energy
bound

(5)

for any time t > 0, where ||u(·, t)||0, Ω designates the 2!
norm of Ψ over Ω

which can also be interpreted as the probability of
finding Ψ in Ω and translates the absorbing property of
the boundary condition. The boundary condition (3)
is exact in the sense that there is no reflection back into
the computational domain. Mathematically, this
implies that the solution to (2)–(3) is strictly equal to

the restriction , solution to (1).

In the case of unbounded potential and interac!
tion, then the situation is much more complex. Essen!
tially, the possibility of writing the exact boundary
condition (3) is related to the fact that for localized
interactions, the Laplace transform can be used in the
left and right exterior domains to write down the
boundary condition through the Green function. In
the case of nonlocal interactions, this no longer possi!
ble. Except in some special situations of potentials
(e.g., linear potential) and nonlinearity (essentially
integrable systems like the cubic case), it is impossible
to get the exact expression of the absorption condi!
tions. Here, we present without any mathematical
details which are too cumbersome the boundary con!
ditions that can be set at the boundary. We refer to [13]
for the mathematical details. Essentially, the deriva!
tion is based on high!frequency asymptotic expan!
sions in the Laplace domain using the extended theory
of pseudodifferential operators. The resulting bound!
ary conditions are no longer exactly non!reflecting.
They are then called Absorbing (and not transparent)
Boundary Conditions (ABCs), and we need to precise
the order related to their asymptotics with the aim of
measuring the a priori accuracy of the boundary con!
dition. The ABC of order two is given by

(6)

on ΣT. The square!root operator of i∂t + V + f(|Ψ|)
means that we consider the spectral square!root
decomposition of this operator. The resulting operator
is nonlocal but will be localized later for the numerical
purpose through Padé approximants. Higher!order
ABCs can be derived [13] but will not be tested here.
We cannot expect that an ABC works well for any
potential. In practical computations and for f = 0, one
physically admissible assumption is that the potential
is repulsive which means that V : ! × !+ is smooth and
that we have x∂xV(x, t) > 0, ∀(x, t) ∈ Ωl, r × !+, where

Ψ · t,( ) 0 Ω,
Ψ0 ·( ) 0 Ω,

,≤

Ψ · t,( ) 0 Ω,
Ψ x t,( )

2
xd

Ω

∫
 

 

 
1/2

=

Ψ
ΩT

∞

∂nΨ i i∂t V f Ψ( )+ + Ψ– 0,=
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β

2
|x|a, with 0 < a ≤ 2. The assumption on the nonlin!

earity is not clear most particularly when a potential is
added. The only “intuitive” assumption is that the
solution Ψ is outgoing to the bounded domain and that
no nonlinear or potential effect makes it reflecting
back into Ω, which is a priori difficult to check because
mathematically hard to write. Finally, we can prove
[13] that (5) still holds for the second!order ABC (6)
and for a time independent potential V(x) which trans!
lates the absorbing property of the boundary condi!
tion.

2.2. Complex Absorbing Potential (CAP), Exterior 
Complex Scaling and Perfectly Matched Layers (PMLs)

Another useful and widely studied approach for
computing solutions to time!dependent Schrödinger
equations with a potential term by using an absorbing
domain is first the technique of Complex Absorbing
Potential (CAP). Essentially, the idea consists in intro!
ducing a complex potential in the exterior domain to
absorb the travelling wave. Mathematically, this con!
sists in adding a spatial potential –iW in some exterior
layers Ωl = ]xlp, xl[ and Ωr = ]xr, xrp[ (see Fig. 2). Of
course, to coincide with the solution to (2), W is
required to be zero in Ω and with a positive real part in
the layers to damp the incoming wavefield. Another
way to analyze this approach is called the Exterior
Complex Scaling approach which consists in inter!
preting the introduction of the complex potential as
the complex scaling: x  xeiθ, where θ is a rotation
angle which must be correctly chosen. Extension
includes the Smooth Exterior Scaling approach [16,
17]. From the numerical point of view, the CAP
approach is direct to code since we have to solve

(7)
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Fig. 2. Computational domain for the CAP and PML
approaches.
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in the extended domain Ωext := Ωl ∪  ∪ Ωr = ]xlp, xrp[
with boundary Σext = {xlp, xrp}. Here, according to [16,
21], we consider the quadratic profile

(8)

for a real positive value of W0. The thickness δ of the
layer is δ = |xrp – xr| = |xlp – xl|. Other choices include
exponential type absorbing functions [16]. At the
boundary points xlp and xrp, a boundary condition must
be imposed. Here, we consider the classical homoge!
neous Dirichlet boundary conditions Ψ(x, t) = 0 at xlp
and xrp. However, a suitable extension does not seem
direct for nonlinear problems as we will see later.

We concentrate now on another closely related
approach called the Perfectly Matched Layers (PMLs)
method which was introduced by Bérenger [18] for
Maxwell equations. The idea consists in introducing a
complexification of the derivative operator through
damping in the extended domains Ωl and Ωr. In the
case of the nonlinear Schrödinger equation, this can
be written down as

(9)

in Ωext (Fig. 2). Function S is given by S(x) := 1 +
Rσ(x). The layer parameters R and σ must be chosen
carefully. Optimization techniques and adaptive dis!
cretizations can be developed [5]. Here, we will use the
parameter values derived in [19], i.e., R = eiπ/4 and σ is
the quadratic function

(10)

The distance δ := |xrp – xr| = |xl – xlp| (that we take
equal on both sides here for simplicity) corresponds to
the thickness of the left and right absorption regions of
the computational domain. Again, we fix the homoge!
neous Dirichlet boundary conditions: Ψ(x, t) = 0 at xlp
and xrp. It is interesting to note the close form of CAP
and PML approaches even if they lead to different
equations to solve.

Unlike the ABCs, both CAP, ECS, and PMLs must
be adapted and optimized according to each situation.
They have the advantage of being easy to code but at
the price of an extended domain of computation Ωext

where the potential V must be known. This is not
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always the case if V is given only numerically for
instance instead of analytically. One of the advantages
of both CAP and PML methods is that they are local
in time while it is not a priori the case for the ABCs
which include a nonlocal square!root operator. How!
ever, this drawback can be removed by using local
approximations as seen later. Finally, all the tech!
niques are derived in the linear situation and their
application to nonlinear problems is formal. There!
fore, their accuracy must be prospected.

2.3. Discretization Schemes

To compute the solution of the previous problems,
we have to introduce some numerical discretizations.
First, we have to deal with the time discretization in
the interior domain. One widely used scheme is the
Crank–Nicolson scheme which reads

(11)

for 0 ≤ n ≤ N – 1, and a time step ∆t = T/N. Here,
we set

(12)

A more adapted scheme to the computation of soliton
solutions is the Duran–Sanz–Serna scheme [22].
Unfortunately, in both cases, the scheme remains
nonlinear and a fixed point or a Newton algorithm is
required. A few iterations are then necessary increas!
ing the global computational cost of the procedure.
Instead of using these numerical methods, we can con!
sider the Besse relaxation scheme in [20]. Applied to

the nonlinear equation i∂tΨ +  + VΨ + f(|Ψ|)Ψ = 0,
on ΩT, the method leads to the solution to

(13)

Then, system (13) is discretized as
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for 0 ≤ n ≤ N – 1. The initialization of ϒ is chosen as
ϒ

–1/2 = f(|Ψ0
|). We can see that this time discretization

avoid any additional iterative procedure for the non!
linear term and so is well adapted to nonlinear prob!
lems. Furthermore, this scheme is known to preserve
many invariants for the nonlinear Schrödinger equa!
tion [20].

In the case of the CAP, ECS, and PML techniques,
the relaxation scheme directly applies on Ωext. In the
ABCs case, we have to discretize correctly the square!
root operator. To this aim, we can approximate this
operator by using Padé approximants Rm and ϒ

The function Rm is defined by

(15)

where the coefficients  and  are given by  = 0,
and for 1 ≤ k ≤ m

(16)

We can explicit this relation (formally with z = i∂t +
V + ϒ) by

(17)

Then we introduce some auxiliary functions (ϕk)1 ≤ k ≤ m
defined by

for the square!root approximation. The ABC then
becomes

and the time discretization is

(18)
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The definitions of the auxiliary functions lead to the
coupled differential equations

These are discretized by  =  with

This gives an explicit expression for the auxiliary func!
tions at x = xl, r

(19)

Injecting (19) into (18), we get an explicit expression
of ∂nΨ

n + 1 in terms of Ψn + 1 and other updated func!
tions. To discretize the problem in space, we use the
weak formulation associated to (14) which writes
down for any test function ϕ,

(20)

with the update of ϒ on Ω

(21)

We can see here that the nonlinearity is just included as
a potential and therefore no fixed point or Newton
method is necessary since the nonlinearity is explicit
through the update (21). This is also definitively the
way the boundary condition (18) on Σ is treated. The
ABCs are then just a Fourier–Robin boundary condi!
tion which can be easily implemented in the finite ele!
ment code. The formulation (20) can then be solved
through (high!order) finite element methods, result!
ing in the solution of a linear system at each time step.
In the case of a CAP, ECS or PML, the adaptation is
direct by integrating (13) over Ωext and by using the
homogeneous Dirichlet boundary condition. In the
sequel, we use linear finite element methods. The
domain is decomposed into nh spaced elementary seg!

i∂tϕk V V ϒ+ +( )ϕk dk
m
ϕk+ + Ψ, x xl r, .= =

ϕk
n 1/2+ ϕk

n 1+
ϕk

n+
2

!!!!!!!!!!!!!!!!!!!!

2i
∆t
!!!!ϕk

n 1/2+
W

n 1+
ϒ

n 1/2++( )ϕk
n 1/2+

dk
m
ϕk

n 1/2++ +

=  Φ
n 1+ 2i

∆t
!!!!ϕk

n
,+

x xl r, .=

ϕk
n 1/2+ 1

2i
∆t
!!!! W

n 1+
ϒ

n 1/2+
dk

m+ + +
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Φ

n 1+=

+

2i
∆t
!!!!

2i
∆t
!!!! W

n 1+
ϒ

n 1/2+
dk

m+ + +
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ϕk

n
.

2i
∆t
!!!! Φ

n 1+
ϕ Ωd

Ω

∫
∂xΦ

n 1+
∂xϕ Ωd

Ω

∫
– ∂nΦ

n 1+
ϕ Σd

Σ

∫
+

+ W
n 1/2+

ϒ
n 1/2++( )Φ

n 1+
ϕ Ωd

Ω

∫
2i
∆t
!!!! Ψ

n
ϕ Ωd

Ω

∫
=

ϒ
n 3/2+

2f Φ
n 1+

( ) ϒ
n 1/2+

.–=



6

LASER PHYSICS  Vol. 21  No. 8  2011

ANTOINE et al.

ments of size h. Other spatial discretization methods
could be used such as the finite difference or spectral
techniques.

2.4. Numerical Examples

2.4.1. Soliton propagation in a cubic media. The
first test case concerns the propagation of a soliton in
a cubic nonlinear media (V = 0 and f(|Ψ|) = |Ψ|

2)

(22)

for the wavenumber k0 = 15. The computational
domain is [–10; 10] and the maximal time of compu!
tation is T = 2. We take the time step ∆t = 10–3 and
nh = 2000 points for the uniform spatial discretization.
For the CAP, the size of the layer is δ = 4 and W0 = 10
for nh = 2800. The same domain is considered for the
PML with σ0 = 10. For the ABC, we take m = 50 Padé
functions. We represent the amplitude of Ψ in normal
but also logarithmic scale to observe the small reflec!
tions which may appear during the numerical solution
and to understand the accuracy improvement. We
clearly see on Figs. 3a–3b that the CAP approach gives
good results until a wave comes back into the compu!
tational domain. On Figs. 3c–3f, the PML and ABC
methods yields some good results with about the same
accuracy. Low amplitude waves are reflected back into
the computational domain (about 0.1% of the maxi!
mal amplitude of the soliton). For the PML, the size of
the computational domain is 40% more than for the
ABCs. Finally, a very good accuracy is obtained for the
relaxation scheme which makes it very attractive.

2.4.2. Numerical simulation of a saturable nonlinear
Schrödinger equation. The second test that we present
concerns the numerical solution of a saturable
Schrödinger equation (SNLSE) used in optics. This
equation models pulse propagation in optical fibers
made from doped silica [23]. The saturating nonlinear
term is exponential and the equation that we solve is

(23)

The saturation term γ is related to the saturation inten!
sity of the fiber. We take γ = 0.5 to be close to the values
in [23]. The initial datum is the soliton (22) (for t = 0).
All the simulations parameters are the same as in Sub!
section 2.4.1. We can again see that the CAP method
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leads to wrong results while the PML and ABC
approaches provide a good accuracy for a small reflec!
tion. The relaxation scheme is efficient and accurate.

3. TWO!DIMENSIONAL NONLINEAR 
PROBLEMS

Let us consider the two!dimensional nonlinear
Schrödinger equation

(24)

Here, the computational domain Ω is a bounded set of
!2 with a regular convex boundary Σ. We compute the
solution on a time interval [0; T]. The resulting time!
space domains are therefore: ΩT := Ω × [0; T], and
ΣT:= Σ × [0; T]. The initial data Ψ0 is compactly sup!
ported in Ω. The operator ∆ is the Laplace operator in

two!dimensions: ∆ :=  + , with x = (x1, x2). The

potential V is a function from !2 × [0; T] onto ! which
is smooth outside Ω. The nonlinear function f is sup!
posed to be smooth outside Ω.

3.1. Absorbing Boundary Conditions

The development of ABCs for two!dimensional
nonlinear Schrödinger equation is a very recent area of
research. Very few results are only available. We refer to
[11, 12] for examples. In the present paper, we con!
sider the new ABCs developed in [13, 14]. Again, we
do not explain the technical theory for constructing
such boundary conditions and refer to [13, 14] for
more details. The ABC for the two!dimensional case is

(25)

This boundary condition can be considered as an
extension of (6). Vector n is the outwardly directed unit
normal vector to Ω. The function κ is the curvature of
Σ at a point of the surface. Finally, ∆

Σ
 is the Laplace–

Beltrami operator over the surface. For example, for a
disk of radius R, the normal derivative is ∂n = ∂r, the

curvature is R–1 and ∆
Σ
 = , where the polar coor!

dinate system is (r, θ). We will show during the numer!

i∂tΨ x t,( ) ∆Ψ x t,( ) V x t,( )Ψ x t,( )+ +

+ f Ψ( )Ψ x t,( ) 0,=

x t,( ) ΩT,∈

Ψ x 0,( ) Ψ0 x( ), x Ω.∈=














∂x1

2
∂x2

2

∂nΨ i i∂t ∆
Σ

V f Ψ( )+ + + Ψ– κ

2
!!Ψ+

– κ

2
!! i∂t ∆

Σ
V f Ψ( )+ + +( )

1–
∆

Σ
Ψ 0,=

on ΣT.

R
2–
∂
θ

2
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ical approximation by the relaxation scheme how to
suitably localize this operator.

3.2. Complex Absorbing Potential 
and PerfectlyMatched Layers

The extension of the CAP method is direct in the
form

(26)

The choice of the function W is however not clear
most particularly for a nonlinear problem and a gen!
eral domain Ω. Here, the domain Ω is the rectangle
]a1, a1[ × ]–a2, a2[, and the extended computational
domain Ωext is ]–(a1 + δ), a1 + δ[ × ]–(a2 + δ), a2 + δ[.
The thickness of the layer is parameterized by δ. We
use W(x) = W1(x)W2(x), where Wj is given by

(27)

Function 1! is the characteristic function of a set !. It
is not clear if this choice is optimal. We do not develop
the ECS here.

For the PMLs approach, the choice of domain Ωext

is restricted in practice since essentially the PMLs are
written according to a special coordinates system
related to Ω. For example, for the cartesian coordi!
nates associated with the rectangles Ω and Ωext, we
consider the modified system

(28)

with, for j = 1, 2,

i∂tΨ x t,( ) ∆Ψ x t,( ) V x t,( )Ψ x t,( )+ +

– iW x( )Ψ x t,( ) f Ψ( )Ψ x t,( )+ 0,=

x t,( ) ΩT
ext

,∈

Ψ x 0,( ) Ψ0 x( ), x Ω
ext

.∈=













Wj x( ) W0δ
2–

xj aj–( )
21 xj aj≥

x( ).=

i∂tΨ
1

S1S2

!!!!!!!!! ∂x1

S1

S2

!!!!∂x1
Ψ

 

 
∂x2

S2

S1

!!!!∂x2
Ψ

 

 +
 

 +

+ VΨ f Ψ( )Ψ+ 0,=

x t,( ) ΩT
ext

,∈

Ψ x 0,( ) Ψ0 x( ), x Ω,∈=

Ψ x t,( ) 0, x ΣT
ext

,∈=





















Sj x( ) 1 Rσj x( )+=

σj x( ) σ0
xj aj–

δ
!!!!!!!!!!!!!

 

 
2

1 xj aj≥
x( ).=











Let us now consider an annulus. The physical com!
putational domain is the disk of radius Ω = DR and
the PML medium is the annulus D

δ
 of thickness δ =

R* – R. Then, going to the polar coordinates system
(r, θ), the PML writes down

(29)

with Ωext = DR*, Σext = CR* and

(30)

3.3. Discretization Schemes

For the Eq. (24), the interior relaxation scheme
which is based on

(31)

is given by

(32)

for 0 ≤ n ≤ N – 1, where the notations are the same
as (12).

In the case of the ABC (25), we discretize the rela!
tion by using ϒ = f(|Ψ|) and some additional auxiliary
functions (ϕk)1 ≤ k ≤ m and ψ. More precisely, we get the
scheme

i∂tΨ
1

rŜS
!!!!!!! ∂r

Ŝr
S
!!!!∂rΨ

 

  S

Ŝr
!!!!∂

θ

2
Ψ++

+ VΨ f Ψ( )Ψ+ 0,=

x t,( ) ΩT
ext

,∈

Ψ x 0,( ) Ψ0 x( ), x Ω,∈=

Ψ x t,( ) 0, x ΣT
ext

,∈=





















S r( ) 1 Rσ r( ),+=

Ŝ r( ) 1 R
r
!!! σ s( ) s,d

R

r

∫
+=

σ r( ) σ0
r R–
δ

!!!!!!!!!
 

 
2

1r R≥
x( ).=



















i∂tΨ ∆Ψ VΨ ϒΨ+ + + 0, on ΩT,=

ϒ f Ψ( ), on ΩT,=





2iΦ
n 1+

∆t
!!!!!!!!!! ∆Φ

n 1+
W

n 1+
Φ

n 1++ +

+ ϒ
n 1/2+

Φ
n 1+

2iΨ
n

∆t
!!!!!,=

ϒ
n 3/2+

ϒ
n 1/2++

2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f Ψ

n 1+
( ),=


















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(33)

In view of a finite element approach, we need to write
the associated weak formulation for the first equation
of system (32), for a test!function ϕ,

(34)

and updating by

(35)

Then, we inject the expression of the normal deriv!
ative ∂nΦ

n + 1 by using (33). This leads to a linear sys!
tem of equations with unknowns Φn + 1 in Ω, coupled
to the surface equations in terms of additional
unknowns (ϕk)1 ≤ k ≤ m and ψ. For the CAP and PML,
both the time and space discretizations are directly
realized in the extended computational domain.
Finite difference are used for the spatial discretization.

3.4. The Example of the Cubic Media 
for the Propagation of a Soliton

3.4.1. Soliton construction by a shooting method. In
the two!dimensional case, there is no explicit analyti!
cal expression of the soliton. Its construction must be
realized numerically. To this aim, we compute a solu!
tion to the 2D stationary Schrödinger equation by

∂nΦ
n 1+

i ak
m

k 0=

m

∑
 

 

 

Φ
n 1+– κ

2
!!Φ

n 1++

+ i ak
m

dk
m
ϕk

n 1/2+

k 1=

m

∑
κ

2
!!ψ

n 1/2+– 0,=

on Σ,

2i
∆t
!!!! ∆

Σ
W

n 1+
ϒ

n 1/2+
dk

m+ + + +
 

 
ϕk

n 1/2+
Φ

n 1+–  = 2i
∆t
!!!!ϕk

n
,

on Σ,

2i
∆t
!!!! ∆

Σ
W

n 1+
ϒ

n 1/2++ + +
 

 
ψ

n 1/2+
∆

Σ
Φ

n 1+–  = 2i
∆t
!!!!ψ

n
,

on Σ,

ϕk
0

0 on 1 k m, ψ
0

≤ ≤ 0, on Σ,= =

ϒ
n 3/2+

2f Φ
n 1+

( ) ϒ
n 1/2+

, on Ω.–=

















































2i
∆t
!!!! Φ

n 1+
ϕ Ωd

Ω

∫
∇Φ

n 1+
 · ∇ϕ Ωd

Ω

∫
–

+ ∂nΦ
n 1+

ϕ Σd

Σ

∫
W

n 1+
Φ

n 1+
ϕ Ωd

Ω

∫
+

+ ϒ
n 1/2+

Φ
n 1+

ϕ Ωd

Ω

∫
2i
∆t
!!!! Ψ

n
ϕ Ω,d

Ω

∫
=

ϒ
n 3/2+

2f Ψ
n 1+

( ) ϒ
n 1/2+

.–=

using a shooting method [24]. Let us consider the non!
linear focusing cubic Schrödinger equation

(36)

and let us compute a stationary solution under the
form

(37)

where r = ||x|| = , µ ∈ ! and φ is supposed to
be spatially localized. Then we have to solve the non!
linear elliptic equation

(38)

We make the assumption that φ has a radial symmetry.
Then going to the radial coordinates, we have to solve
a second!order ordinary differential equation on the
interval [0; R]

(39)

We can next work for µ = 1 by the change of variable

Furthermore, to get a two differentiable smooth solu!
tion we impose ψ'(0) = 0 to avoid any singularity at 0.
Finally, we have to solve the differential nonlinear
system

(40)

where we try to find a solution which tends towards
zero to infinity. A Taylor expansion at zero shows that
we must have φ''(0) = β – q|β|2β. A shooting method is
then applied by taking a radial step of discretization
∆r = 10–3. The initial data β is ajusted in such a way
that suitable decay of the solution φ is obtained. We
therefore have a radial solution φ(r), for r ≤ R, which is
then extended to the whole disk of radius R by radial
symmetry to get the soliton solution. Then, the soliton
is multiplied by a gaussian with wavenumber k0 = k0x
as

(41)

to make it moves. At R = 10, we have the approxima!
tion |ψ0(R)| ≈ 5 × 10–5. If we extend the domain to R =
15, we get |ψ0(R)| ≈ 3 × 10–7. Indeed, the soliton has a
slow decay which implies that relatively large compu!
tational domains must be chosen to be sure that the
initial data is numerically compactly supported. At the
computer code level, this implies that we have to work
in quadruple precision for R = 15. For stability rea!

i∂tψ ∆ψ ψ
2
ψ+ + 0, on !

2
!

+
,×=

ψ r t,( ) e
iµ t

φ r( ),=

x
2

y
2+

–µφ ∆φ φ
2
φ+ + 0, x !

2
.∈=

∂r
2
φ

1
r
!!∂rφ µφ– φ

2
φ+ + 0, r 0; R[ ].∈=

φ̃ r( )
1

µ

!!!!!!φ r

µ

!!!!!!
 

  .=

∂r
2
φ

1
r
!!∂rφ φ– φ

2
φ+ + 0, 0 r R,< <=

φ' 0( ) 0, φ 0( ) β,= =










ψ0 x y,( ) φ r( )e
ik0x1–

=
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sons, the number of significative digits is crucial for β.
Finally, we will consider next the disk of radius R = 10
as computational domain Ω.

Remark 1. This construction of the soliton directly
extends to other nonlinearities such as f(|ψ|) = |ψ|2σ,
with σ > 0. This allows for example to consider the
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quintic nonlinearity f(|ψ|) = |ψ|4. Let us remark that
other possible applications of interest of the shooting
techniques (for stationary solutions) as well as relax!
ation schemes (for nonlinear dynamics) could be for
instance the numerical solution of nonlinear
Schrödinger equations modelling DC and AC Joseph!
son effects for superfluid Fermi in BCS–BEC cross!
over at zero temperature [25, 26]. Then, specific
potentials must be considered for realistic simulations.
In the same spirit, applications could be considered in
the background of Feshback resonance where specific
nonlinear potentials with trapping potential and exter!
nal driving field are included [27].

3.4.2. Accuracy of the truncation techniques. We
now consider as initial data the soliton solution com!
puted by the previous shooting method and then mod!

ulated by  with k0 = 5. For the CAP and PMLs,
we take ∆t = 10–3 for a rectangular physical domain
Ω := [–10, 10] × [–10, 10] embedded in the extended

e
ik0x1

domain Ωext := [–12, 12] × [–12, 12]. This last domain
is discretized with a uniform grid composed of 501 ×
501 points for the finite difference approximation. For
the ABC approach, the domain is the circle of radius
10 for nP = 220000 degrees of freedom of the linear
finite element method. Figure 5a represents the 3D
propagation of the soliton solution |ψ| in the space (x1,
x2, t) with ABCs in log!scale. We can observe some
small reflections at the boundary when the soliton hits
the left plane. For an easier visualization of the results,
we choose to report a slice of the wave field in the plane
(x1, t) for x2 = 0 again in log!scale. This gives Figs. 5b–
5d for respectively the CAPs, PMLs, and ABCs
approaches. As in the one!dimensional case, the pro!
posed CAP method gives incorrect results while both
PMLs and ABCs solution are physically correct with
small reflection back. Furthermore, the relaxation
schemes yield again a suitable accuracy for a low com!
putational cost.

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

−10 −6−8 −4 −2 0 2 4 6 8 10

2.0

1.8
1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

−10 −5 0 5 10
0

2.0

1.8
1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

−10 −5 0 5 10
0

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0
10

5
0

−5
−10

−5
0 5

10

0

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

−4.0

0

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

−4.0

0

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

−4.0

0

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

−4.0

PML ABC

ABC CAP(a) (b)

(c) (d)

x1 x1

x2 x1

x1

Fig. 5. Numerical solutions |ψ| for the 2D cubic case: (a) 3D propagation of the soliton solution on the disk of radius R = 10 with
ABCs. (b–d) CAPs, PMLs, and ABCs solution. The figures are built as slices in the (x1, t) plane for x2 = {0}.



12

LASER PHYSICS  Vol. 21  No. 8  2011

ANTOINE et al.

4. CONCLUSIONS

We proposed in this paper a numerical comparison
of CAPs, PMLs, and ABCs techniques for one! and
two!dimensional nonlinear Schrödinger equations
(cubic and saturation media). The initial data is a soli!
ton which is analytically known for the one!dimen!
sional case and numerically built by a shooting
method in the two!dimensional case. The numerical
schemes are based on a relaxation scheme in time and
finite element or finite difference in space. From the
numerical simulations, it appears that the PMLs and
ABCs provide a suitable and similar accuracy com!
pared to the CAPs method which leads to wrong
results. Finally, all the computer codes are available
freely at http://microwave.math.cnrs.fr/code/index.
html.

REFERENCES

1. W. Bao, D. Jaksch, and P. Markowich, J. Comput.
Phys. 187, 318 (2003).

2. W. Bao, “The Nonlinear Schrodinger Equation and
Applications in Bose–Einstein Condensation and
Plasma Physics,” in Dynamics in Models of Coarsening,
Condensation and Quantization, Vol. 9 of IMS Lecture
Notes Series (World Sci., Singapore, 2007), p. 215.

3. S. Selsto and S. Kvaal, J. Phys. B: At. Mol. Opt. Phys.
43, 065004 (2010).

4. M. Heinen and H. J. Kull, Laser Phys. 20, 581 (2010).
5. X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and

A. Schädle, Comm. Comput. Phys. 4, 729 (2008).
6. X. Antoine, C. Besse, and S. Descombes, SIAM J.

Numer. Anal. 43, 2272 (2006).
7. J. Szeftel, Numer. Math. 104, 103 (2006).

8. X. Antoine, C. Besse, and J. Szeftel, Cubo 11, 29
(2009).

9. C. Zheng, J. Comput. Phys. 215, 552 (2006).
10. J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 78, 026709

(2008).
11. Z. Xu, H. Han, and X. Wu, J. Comput. Phys. 225, 1577

(2007).
12. J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 79, 046711

(2009).
13. P. Klein, “Construction et analyse de conditions aux

limites artificielles pour des équations de Schrödinger
avec potentiels et non linéarités,” Ph.D. Thesis (Nancy
Univ., France, 2010).

14. X. Antoine, C. Besse, and P. Klein, in preparation.
15. J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Phys.

Rep.: Rev. Sec. Phys. Lett. 395, 357 (2004).
16. A. Scrinzi, Phys. Rev. A 81, 053845 (2010).
17. O. Shemer, D. Brisker, and N. Moiseyev, Phys. Rev. A

71, 032716 (2005).
18. J. Bérenger, J. Comput. Phys. 114, 185 (1994).
19. C. Zheng, J. Comput. Phys. 227, 537 (2007).
20. C. Besse, SIAM J. Numer. Anal. 42, 934 (2004).
21. A. Jungel and J.!F. Mennemann, Math. Comput.

Simul. (in press).
22. A. Durán and J. M. Sanz!Serna, IMA J. Numer. Anal.

20, 235 (2000).
23. A. Usman, J. Osman, and D. Tilley, Turk. J. Phys. 28,

17 (2004).
24. L. Di Menza, Math. Mod. Num. Anal. 43, 173 (2009).
25. L. Salasnich, Laser Phys. 19, 642 (2009).
26. L. Salasnich, F. Ancilotto, N. Manini, and F. Toigo,

Laser Phys. 19, 636 (2009).
27. V. Yukalov and V. Bagnato, Laser Phys. Lett. 6, 399

(2009). 


