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Abstract. Mathematical constructions and comparisons of accurate absorbing boundary
conditions for the one-dimensional Schrödinger equation with a general variable repulsive
potential are developed. Stable semi-discretization schemes are built for the associated
initial boundary value problems. Finally, some numerical simulations give a comparison of
the various absorbing boundary conditions and show that they yield accurate computations.

1 Introduction

We consider in this paper the following initial value problem which consists in a time-
dependent Schrödinger equation with potential V set in an unbounded domain{

i∂tu+ ∂2
xu+ V u = 0, (x, t) ∈ R× [0;T ],

u(x, 0) = u0(x), x ∈ R,
(1)

where u0 is the initial data. The maximal time of computation is denoted by T . We assume
here that V is a real-valued potential such that V ∈ C∞(R × R+,R). Finally, we make
the assumption that V is a repulsive potential [10]. This kind of potential then creates
acceleration of the field compared to the free-potential equation [10, 8, 20, 21].

For obvious reasons linked to the numerical solution of such problems, it is usual to
truncate the spatial domain with a fictitious boundary Σ := ∂Ω = {xl, xr}, where xl and
xr respectively designate the left and right endpoints introduced to have a bounded domain
of computation Ω =]xl;xr[. Let us introduce the time domains ΩT = Ω × [0;T ] and ΣT =
Σ× [0;T ]. Considering the fictitious boundary Σ, we are now led to solve the problem{

i∂tu+ ∂2
xu+ V u = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ Ω.
(2)

In the sequel of the paper, we assume that the initial datum u0 is compactly supported in
the computational domain Ω.
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Of course, a boundary condition set on ΣT must be added to system (2). An ideal
boundary condition answering the problem is the so-called Transparent Boundary Condition
(TBC) which leads to a solution of (2) equal to the restriction of the solution of (1) on ΩT . A
first well-known case considers V = 0. This situation has been treated by many authors [2].
In this case, using a Laplace transform in time on (1), solving the associated Helmholtz-type
differential equation in x and going back to the initial domain by inverse Laplace transform
yields the following TBC in term of the Dirichlet-to-Neumann (DtN) operator

∂nu+ e−iπ/4∂
1/2
t u = 0, on ΣT , (3)

where n is the outwardly directed unit normal vector to Σ. The operator ∂
1/2
t is known as the

half-order derivative operator (see Equation (12) for its definition). Its nonlocal character
related to its convolutional structure has led to many developments concerning its accurate
and efficient evaluation in the background of TBCs [2].

A second situation which is related to the above case is when the potential is only time
varying: V (x, t) = V (t). In this case, the change of unknown

v(x, t) = e−iV(t)u(x, t), (4)

with

V(t) =

∫ t

0

V (s) ds (5)

reduces the initial Schrödinger equation with potential to the free-potential Schrödinger
equation [5]. Then, the TBC (3) can be used for v and the resulting DtN TBC for u is

∂nu(x, t) + e−iπ/4eiV(t) ∂
1/2
t

(
e−iV(t)u(x, t)

)
= 0, on ΣT . (6)

In the two above situations, the potential does not depend on the spatial variable x.
Very recently, some attempts have been directed towards the derivation of TBCs for special
potentials. In [18], the case of a linear potential is considered in the background of parabolic
equations in electromagnetism. Using the Airy functions, the TBC can still be written
explicitly and its accuracy is tested. Again, for the linear potential, improvements have been
introduced in [12] using a discrete transparent boundary condition. In [27], Zheng derives
the TBC in the special case of a sinusoidal potential using Floquet’s theory. Extensions to
two-dimensional PDEs problems have been proposed in [13]. Finally, in [14], the authors
consider the case of a Coulomb-like potential which can be handled explicitly in the TBC by
means of the Whitaker’s second functions. All these solutions take care of the very special
form of the potential. Let us remark that other solutions based on PML techniques have
also been recently proposed e.g. in [26].

To the best of our knowledge, the problem of considering a solution in the case of a general
potential has not been yet addressed. We must notice here that a general theory cannot be
expected to provide a general TBC. A more realistic goal is to build an accurate approxima-
tion of the TBC which is usually called artificial or Absorbing Boundary Condition (ABC).
The aim of this paper is to prospect different ways of building such boundary conditions and
to approximate them correctly to get unconditionally stable numerical schemes.

The paper is organized as follow. In Section 2, we present two possible approaches
for building ABCs for the one-dimensional Schrödinger equation with a variable repulsive
potential. The central key point of these approaches is based on a derivation of a suitable
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asymptotic expansion of the related Dirichlet-to-Neumann (DtN) operator. Therefore, after
giving the basic tools of fractional pseudodifferential operators, we derive in Section 2.2 some
asymptotic of the DtN map for our equation taking care of the principal symbol. Numerical
formal comparisons are provided in the case of a linear potential. Next, Subsection 2.3
discusses the choice of the ABC and some modifications of the asymptotic expansions yielding
a first class of second- and fourth-orders ABCs. A well-posedness result is then stated in
Subsection 2.4. A second family of ABCs is proposed in Section 2.5. It is shown in Subsection
2.6 that these ABCs can be identified to the first ones if and only if the potential is time
independent. Otherwise, these new conditions yield different formulations. We consider in
Section 3 the semi-discretization of the various ABCs and state unconditional stability results
for the first class of ABCs. Additional (symbolic) approximations of the second family of
ABCs are introduced in view of an efficient discretization. Section 4 presents some numerical
computations for time dependent and time independent space variable potentials. These
simulations show the high accuracy and effectiveness of the proposed ABCs. Moreover,
comparisons are provided between the two approaches. Finally, a conclusion is given in
Section 5.

2 Artificial boundary conditions for a general potential

2.1 Two possible approaches

The first natural strategy would consists in building an approximate boundary condition
based on the equation (1) with unknown u.

A second strategy is the following. Let us consider now that u is the exact solution of
(1) and let us define the phase function V as a primitive in time of the potential V

V(x, t) =

∫ t

0

V (x, s) ds. (7)

Let us introduce v as the new unknown defined by

v(x, t) = e−iV(x,t)u(x, t). (8)

We obviously have v0(x) = u0(x). Moreover, plugging u given by (7)–(8) into the Schrödinger
equation with potential shows that v is solution to the variable coefficient Schrödinger equa-
tion

i∂tv + ∂2
xv + f ∂xv + g v = 0, in ΩT , (9)

setting f = 2i∂xV and g = i∂2
xV − (∂xV)2. The fundamental reason why considering this

change of unknown is crucial is that this first step would lead to the TBC applied to v and
associated to (9) for a time-dependent but x-independent potential (since then f = g = 0).
This is not the case if we work directly with the initial unknown u for (2) which would give
an approximate artificial boundary condition even for a time-dependent and x-independent
potential. Let us note that this strategy (called ”Phase Function Transformation Strategy”
in [2]) has been first applied with success in [5] for nonlinear artificial boundary conditions
for the one-dimensional nonlinear Schrödinger equation.

We will see later that these approaches lead to different artificial boundary conditions
which however coincide in some cases.
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2.2 Derivation of the asymptotic expansion of the DtN operator

2.2.1 Fractional pseudodifferential operators

Since the Schrödinger equation has a space-time potential, it is well-known that an approach
purely based on the Laplace transform is inadequate. Furthermore, for a x-dependent poten-
tial V (x, t) = V (x), being able to build the TBC would require the solution of a second-order
Helmholtz-type differential equation after applying a Laplace transform. This is impossible
in general for a given potential. This is the reason why trying to build an approximate
boundary condition is more realistic. To this end, we propose an approach based on the
theory of pseudodifferential operators which naturally generalizes the Laplace transform and
the use of a factorization theorem which gives an approximate solution to the second-order
differential equation in x. This approach is strongly related to the pioneering works of
Engquist and Majda [15] for other kinds of PDEs.

A pseudodifferential operator P (x, t, ∂t) is given by its symbol p(x, t, τ) in the Fourier
space

P (x, t, ∂t)u(x, t) = F−1
t

(
p(x, t, τ)û(x, τ)

)
=

∫
R
p(x, t, τ) Ft(u)(x, τ) eitτ dτ, (10)

where Ft is the time Fourier transform

Ft(u)(x, τ) =
1

2π

∫
R
u(x, t)e−itτdt.

The inhomogeneous pseudodifferential operator calculus that we use in the paper was intro-
duced in [17] and applied e.g. in [3]. For the sake of conciseness, we only give the useful
material needed here. Let α be a real number and Ξ an open subset of R. Then (see in [24]),
the symbol class Sα(Ξ× Ξ) denotes the linear space of C∞ functions a(x, t, τ) in Ξ× Ξ×R
such that for each K ⊆ Ξ×Ξ and that for all indices β, δ, γ, there exists a constant Cβ,δ,γ(K)
such that

|∂βτ ∂δt ∂γxa(x, t, τ)| ≤ Cβ,δ,γ(K)(1 + |τ |2)α−β,

for all (x, t) ∈ K and τ ∈ R. A function f is said to be inhomogeneous of degree m if:
f(x, t, µτ) = µmf(x, t, τ), for any µ > 0. Then, a pseudodifferential operator P = P (x, t, ∂t)
is inhomogeneous and classical of order M , M ∈ Z/2, if its total symbol, designated by
p = σ(P ), has an asymptotic expansion in inhomogeneous symbols {pM−j/2}+∞

j=0 as

p(x, t, τ) ∼
+∞∑
j=0

pM−j/2(x, t, τ),

where each function pM−j/2 is inhomogeneous of degree M − j/2, for j ∈ N. The meaning
of ∼ is that

∀m̃ ∈ N, p−
em∑
j=0

pM−j/2 ∈ SM−( em+1)/2.

A symbol p satisfying the above property is quoted by p ∈ SMS and the associated operator
P = Op(p) by inverse Fourier transform by P ∈ OPSMS . Finally, let us remark that smooth-
ness of the potential V is required for applying pseudodifferential operators theory. However,
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this is crucial into the complementary set of Ω but a much weaker regularity hypothesis could
be expected for the interior problem set in Ω allowing therefore a wide class of potentials.

Other useful nonlocal operators in the sequel of the paper are the fractional integration
operators I

α/2
t of order α/2 which are defined by the relation

I
α/2
t f(t) =

1

Γ(α/2)

∫ t

0

(t− s)α/2−1f(s) ds, for α ∈ N, (11)

and have Fourier symbol

(
i

τ

)α/2
, where Γ designates the Gamma special function. Another

operator is the fractional differential operator ∂
1/2
t given by

∂
1/2
t f(t) =

1√
π
∂t

∫ t

0

f(s)√
t− s

ds, (12)

with symbol eiπ/4
√
τ . All along the paper, we consider that, for a complex number z,

√
z is

the principal determination of the square-root with branch-cut along the negative real axis.
One of the key points of pseudodifferential operator calculus is that it enables to ma-

nipulate symbols of operators at the algebraic level rather than operators at the functional
level, therefore giving practical rules of computation e.g. for the composition of two variable
coefficients integro-differential operators (that is with non polynomial symbols in τ).

2.2.2 Computation of the asymptotic symbolic expansion of the DtN operator

For conciseness, we explain here how to compute the asymptotic expansion of the DtN
operator for a given model Schrödinger equation with smooth variable coefficients A and B

L(x, t, ∂x, ∂t)w = i∂tw + ∂2
xw + A∂xw +Bw = 0. (13)

Since we are trying to build an approximation of the DtN operator at the boundary, we must
be able to write the normal derivative trace operator ∂x (focusing on the right point xr) as a
function of the trace operator through an operator Λ+ which involves some (fractional) time
derivatives of w as well as the effect of the potential V and its (x, t) variations. This can be
done in an approximate way thanks to the factorization of L given by relation (13)

L(x, t, ∂x, ∂t) = (∂x + iΛ−)(∂x + iΛ+) +R, (14)

where R ∈ OPS−∞ is a smoothing pseudodifferential operator. The operators Λ± are pseu-
dodifferential operators of order 1/2 (in time) and order zero in x. Computing the operators
Λ± in an exact way through their respective total symbols σ(Λ±) cannot be expected in
general. Therefore, an asymptotic form of the total symbol σ(Λ±) is sought as

σ(Λ±) = λ± ∼
+∞∑
j=0

λ±1/2−j/2, (15)

where λ±1/2−j/2 are symbols corresponding to operators of order 1/2− j/2.
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Now, expanding the factorization (14), identifying the terms in L in front of the ∂x
operators with the ones from the expanded factorization and finally using a few symbolic
manipulations yield the system of equations

i(λ− + λ+) = a

i∂xλ
+ −

∞∑
α=0

(−i)α

α!
∂ατ λ

− ∂αt λ
+ = −τ + b,

(16)

with a(x, t) = σ(A) = A, b(x, t) = σ(B) = B, since A and B are two functions of (x, t).
Looking at the first equation of system (16), we see that we must have: λ−1/2 = −λ+

1/2.

Now, if we identify the highest order symbol in the second equation of system (16), then one
gets four possibilities

λ+
1/2(τ) = ∓

√
−τ (17)

or
λ+

1/2(x, t, τ) = ∓
√
−τ + b(x, t). (18)

The first choice can be viewed as considering a principal classical symbol and the second
possibility yields a semi-classical symbol (following the notations e.g. in [10]). Let us now
adopt the first strategy which consists in working on equation (1) for u setting A = 0 and
B = V . Following e.g. [2], the principal symbol with negative imaginary part characterizes
the outgoing part of the wave field u. Studying the sign of (17) and (18) for a real-valued
potential V shows that the negative sign gives the good choice. Therefore, we obtain the
two possible symbols

λ+
1/2 = −

√
−τ (19)

and
λ+

1/2 = −
√
−τ + V . (20)

Let us now consider the second choice based on the gauge change leading to compute v
solution to (9) for A = f and B = g. Then, again, choosing (19) yields the outgoing solution
for v. However, g is now a complex-valued potential with no fixed sign. Therefore, we cannot
determine the outgoing wave for (18).

Choosing the principal symbol is a crucial point since it is directly related to the accuracy
of the artificial boundary condition. Moreover, for a given choice of the principal symbol, the
corrective asymptotic terms {λ+

1/2−j/2}j≥1 are different since they are computed in cascade

developing the infinite sum in the second equation of (16). For the first strategy, we have
the following Proposition.

Proposition 1. Let us fix λ+
1/2 by the expression (19). Then, the solution to system (16) is

given by

λ+
0 =

1

2λ+
1/2

(
−i∂xλ+

1/2 − iaλ
+
1/2

)
, (21)

and, for j ∈ N, j ≥ 1, by

λ+
−j/2 =

1

2λ+
1/2

(
b δj,1 − i∂xλ+

−j/2+1/2 − iaλ
+
−j/2+1/2

−
j∑

k=1

λ+
−j/2+k/2λ

+
1/2−k/2 −

(j+1)/2∑
α=1

(−i)α

α!

j+1−2α∑
k=0

∂ατ λ
+
−j/2+k/2+α∂

α
t λ

+
1/2−k/2

 (22)
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where δj,1 = 0 if j 6= 1 and δ1,1 = 1.

Applying the above proposition to our situation, one obtains the following corollary.

Corollary 1. If we fix the principal symbol λ+
1/2 = −

√
−τ for a = f and b = g, then the

next three terms of the asymptotic symbolic expansion are given by

λ+
0 = ∂xV , λ+

−1/2 = 0 and λ+
−1 =

i∂xV

4τ
. (23)

For the second choice (18), the first symbols of the asymptotic expansion are given by
the following Proposition.

Proposition 2. If one considers λ+
1/2 = −

√
−τ + V in (16) for a = 0 and b = V , then one

has

λ+
0 = 0, λ+

−1/2 = 0, and λ+
−1 =

−i
4

∂xV

−τ + V
. (24)

Remark 1. We cannot obtain a general expression similar to (22) for the second choice.
The reason is that the terms appearing in (16) may be inhomogeneous. Indeed, derivating
the symbols λ+

j may lead to a sum of several terms of different orders. This is the case for
example for ∂xλ

+
−1, which is the sum of two terms, one of order −1 and the other of order

−2.

Remark 2. Considering λ+
1/2 = −

√
−τ in (16) for a = 0 and b = V would give some

symbols which are approximations of λ+
1/2 = −

√
−τ + V and (24) by using a second-order

truncated Taylor expansion when |τ | → +∞. For this reason, this case which leads to less
accurate artificial boundary conditions will not be considered in the sequel.

2.2.3 Comparison of the exact and approximate symbols for a linear potential

In the case of a linear potential V = x, the total symbol λ+(x, τ) can be computed. It is
thus possible to compare it to its asymptotic expansion based on (24). Applying a Fourier
transform to equation (2) yields

∂2
xû+ (−τ + x) û = 0. (25)

According to [18], the outgoing solution to (25) is

û(x, τ) = Ai
(
(x− τ)e−iπ/3

)
, (26)

where Ai stands for the Airy function [1]. Derivating this expression, we obtain

∂nû(x, τ) = e−iπ/3
Ai′
(
(x− τ)e−iπ/3

)
Ai ((x− τ)e−iπ/3)

û(x, τ), (27)

which means that the total symbol of the DtN operator is

λ+ = e2iπ/3 Ai′
(
(x− τ)e−iπ/3

)
Ai ((x− τ)e−iπ/3)

. (28)

7



−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

Real part

Im
ag

in
ar

y 
pa

rt

τ = −50 : 0  −−−  x
r
 = 10

 

 

λ
σ

1

σ
2

0 1 2 3 4 5 6
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Real part

Im
ag

in
ar

y 
pa

rt

τ = 0 : 50  −−−  x
r
 = 10

 

 

λ
σ

1

σ
2

Figure 1: Comparison of the exact total symbol λ+ and its first and second order asymptotic
approximations σ1 and σ2 in the complex plane at xr = 10 and for τ ∈ [−50; 0] (left picture)
and τ ∈ [0; 50] (right picture).
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Figure 2: Logarithm of the absolute error |λ+ − σ1| and |λ+ − σ2| with respect to τ . A
singularity is observed at point τ = xr = 10.

The application of Corollary 2 gives the first-order and second-order approximate symbols

σ1 = iλ+
1/2 = −i

√
−τ + x,

σ2 = i
(
λ+

1/2 + λ+
0 + λ+

−1/2 + λ+
−1

)
= σ1 +

1

4

1

−τ + x
,

(29)

setting V = x.
Let us fix the boundary condition at xr = 10. For comparison, we draw on the two

pictures of Figure 1 the three symbols (28) and (29) in the complex plane for values of τ in
[−50; 0] (left) and [0; 50] (right). For negative values of τ , we observe an important correction
when considering σ2 instead of σ1. The order of accuracy is about 10−5 for |τ | = 50 (see
Figure 2). For positive values of τ we can see that the approximation of the symbol λ+

is again improved when σ2 is considered instead of σ1. However, for both approximations,
a singularity appears for τ = xr while it is not the case for λ+ which is smooth. This is
the most dominant error in the approximation process of the symbols (see Figure 2) and
as a consequence in the construction of the artificial boundary condition. Finally, the error
decays when |τ | is large (see Figure 2) which is coherent with the asymptotic expansion (15)
of the symbol λ+. In particular, the symbols λ+

1/2 and λ+
−1 given by the symbolic calculus

rules are exactly the first terms of the asymptotic expansion of λ+ in terms of Airy functions
(28) for large values of τ (see e.g. [1] Chapter 10, properties 10.4.58, 10.4.59 and 10.4.61
p.448).

2.3 Choosing the ABC

If we assume that V is a real-valued smooth function, then the L2(R)-norm of the solution u
to system (1) is conserved. If we truncate the domain by introducing a fictitious boundary,
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then one can expect that the L2(Ω)-norm of the solution is bounded by ||u0||L2(Ω). This is
for example proved in [4] in the case of the free-potential. In the case of a general potential,
the expression of the artificial boundary condition is essential in the proof of a similar result.
In particular, by adapting the proof given in [7] using the Plancherel theorem for Laplace
transform, the following Lemma is the keypoint for proving a well-posedness result.

Lemma 1. Let ϕ ∈ H1/4(0, T ) be a function extended by zero for any time s > T . Then,
we have the following properties

<
(
eiπ/4

∫ ∞
0

ϕ ∂
1/2
t ϕ dt

)
≥ 0,

<
(∫ +∞

0

ϕ It ϕ dt

)
= 0.

This Lemma emphasizes the fact that the artificial boundary condition must have a sym-
metrical form. Since our approach gives the principal symbol of an operator, an infinite
choice of corresponding operators with this principal symbol is possible. For symmetriza-
tion reasons, we propose to fix the choice of the artificial boundary condition based on the
principal symbol λ+

1/2 = −
√
−τ and (23) as follows.

Cancelling the outgoing wave corresponding to λ+
1/2 for v writes down

∂nv + iΛ+v = 0, on ΣT . (30)

Retaining the M first symbols {λ+
1/2−j/2}M−1≥j≥0, we consider the associated artificial bound-

ary condition

∂nuM − i(∂xV)uM + ieiV
M−1∑
j=0

Op
(
λ+

1/2−j/2

) (
e−iVuM

)
= 0, on ΣT , (31)

after replacing v in (30) by its expression (8). In Equation (31), uM designates an approxi-
mation of u since we do not have a Transparent Boundary Condition. However, uM will be
denoted by u in the sequel for conciseness. We adopt the following compact notation of (31)

∂nu+ ΛM
` (x, t, ∂t)u = 0, on ΣT , (32)

where M ≥ 1 corresponds to the order of the boundary condition and is equal to the total
number of terms λ+

j/2 retained in the sum. The subscript ` = 0 (respectively ` = 1) refers to

the choice (19) (respectively (20)) of the principal symbol λ+
1/2.

Let us begin by considering ` = 0 and M = 2. Then one directly obtains

Λ2
0(x, t, ∂t)u = e−iπ/4eiV(x,t)∂

1/2
t

(
e−iV(x,t)u

)
(33)

which is a symmetrical operator. The case M = 4 is more ambiguous. Indeed, we only have

access to the principal symbol λ+
−1 =

i∂xV

4τ
of an operator. A first possible choice would

consist in considering that

Op
(
λ+
−1

)
v =

∂nV

4
It v mod(OPS

−3/2
S ). (34)
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(If A and B are two pseudodifferential operators of order α then we write A = B mod(OPSβ)
to designate that A − B are equal modulo a pseudodifferential operator of OPSβ, β < α.
A similar notation will be adopted at the symbol level: σA = σB mod(Sβ).) However, the
operator in the right-hand side is not symmetrical. Well-posedness results can be however
stated with such a choice but under some very restrictive assumptions on V . A better choice
of operator is

Op
(
λ+
−1

)
v = sg(∂nV )

√
|∂nV |
2

It

(√
|∂nV |
2

v

)
mod(OPS

−3/2
S ), (35)

which is symmetrical unlike (34) and leads to a well-posedness result under weaker assump-
tions. In the above equation, sg(·) designates the sign function.

We finally obtain the following Proposition.

Proposition 3. For ` = 0, the artificial boundary condition of order M is given by

∂nu+ ΛM
0 u = 0, on ΣT , (36)

with
Λ2

0(x, t, ∂t)u = e−iπ/4eiV(x,t)∂
1/2
t

(
e−iV(x,t)u

)
(37)

and

Λ4
0(x, t, ∂t)u = Λ2

0(x, t, ∂t)u+ i sg(∂nV )

√
|∂nV |
2

eiV(x,t)It

(√
|∂nV |
2

e−iV(x,t)u

)
. (38)

The boundary condition (36) is referred to as ABCM
0 in the sequel.

2.4 A well-posedness result for ABCM
0

Considering the artificial boundary conditions (36) of Proposition 3, we get the following
well-posedness result.

Proposition 4. Let u0 ∈ L2(Ω) be a compactly supported initial datum such that Supp(u0) ⊂
Ω. Let V ∈ C∞(R × R+,R) be a real-valued potential. Let us denote by u a solution of the
initial boundary value problem

i∂tu+ ∂2
xu+ V u = 0, in ΩT ,

∂nu+ ΛM
0 u = 0, on ΣT ,

u(x, 0) = u0(x), ∀x ∈ Ω,

(39)

where the operators ΛM
0 , M = 2, 4, are defined in Proposition 3. Then, u fulfils the following

energy bound
∀t > 0, ||u(t)||L2(Ω) ≤ ||u0||L2(Ω), (40)

for M = 2. Moreover, if sg(∂nV ) is constant on ΣT , then the inequality (40) holds for
M = 4. In particular, this implies that we have the uniqueness of the solution u of the initial
boundary value problem (39).

11



Proof. Let us multiply the Schrödinger equation by −i ū, and integrate by parts on Ω. We
obtain the following equation

∂t

∫ xr

xl

|u|2

2
dx− i

[
ū ∂nu

]xr
xl

+ i

∫ xr

xl

|∂xu|2 dx− i
∫ xr

xl

V (x, t) |u|2 dx = 0. (41)

Taking the real part of the above expression and integrating on an arbitrary time interval
[0;T ] leads to

1

2

(
||u(T )||2L2(Ω) − ||u0||2L2(Ω)

)
= <

(∫ T

0

[
i ū ∂nu

]xr
xl

dt

)
+ <

(
i

∫ T

0

∫ xr

xl

V |u|2 dx dt

)
. (42)

Since V is a real-valued potential, the second term of the right-hand side of equation (42) is
equal to zero. Therefore, we now have to study the sign of the first term. Let us focus on
ABC4

0, the case ABC2
0 being then trivial. The quantity iū(x) ∂nu(x) is the sum of the two

terms
−ie−iπ/4 e−iVu ∂1/2

t

(
e−iVu

)
(43)

and
sg(∂nV )

4

√
|∂nV | e−iV u It

(√
|∂nV | e−iVu

)
. (44)

Then, for x = xl,r, we have to determine the sign of the two quantities

<
(
−ie−iπ/4

∫ T

0

ϕl,r(t) ∂
1/2
t ϕl,r(t) dt

)
, (45)

<
(∫ T

0

sg(∂nV (xl,r, t))

4
ψl,r(t) It ψl,r(t) dt

)
, (46)

with ϕl,r(t) = (e−iV u)(xl,r, t) and ψl,r(t) = (
√
|∂nV | e−iV u)(xl,r, t). In the above relations,

we set fl,r = f(xl,r), for a given function f . Thanks to Lemma 1, the term in (45) is negative.
Under the assumption that the sign of ∂nV (xl,r, t) does not depend on the time t, one can
isolate sg(∂nV (xl,r, t)) out of the integral in (46) showing then that the integral term is equal
to zero thanks to Lemma 1. This finally proves that the left-hand side of (42) is negative
and that the energy inequality (40) holds.

Remark 3. If V is a complex-valued potential [23], some results remain true under the
assumption that V is dissipative, that is =(V (x, t)) ≥ 0, for (x, t) ∈ R × [0;T ]. More
precisely, one can still construct the artificial boundary conditions ABCM

0 given by (36)-
(38), with M = 2, 4. Moreover, the well-posedness result holds for ABC2

0 . It is still possible
to symmetrize the artificial boundary condition ABC4

0 by writing

∂nVl,r = eiθl,r
√
|∂nVl,r|

√
|∂nVl,r|, (47)

where t 7→ θl,r(t) denotes the argument of ∂nV on the boundary xl,r. However, the adaptation
of the proof of the well-posedness result for the additional term does not seem possible even
for a constant argument.
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2.5 The other choice of ABC: ABCM
1

After studying the first ABC, let us consider the other artificial boundary condition ABCM
1 ,

for M = 2 and M = 4.

Proposition 5. For ` = 1, the artificial boundary condition of order M based on the first
strategy for symbols (24) is given by

∂nu+ ΛM
1 u = 0, on ΣT , (48)

with
Λ2

1(x, t, ∂t)u = Op
(
−i
√
−τ + V

)
u (49)

and

Λ4
1(x, t, ∂t)u = Λ2

1(x, t, ∂t)u+
1

4
Op

(
∂xV

−τ + V

)
u. (50)

The boundary condition (48) is referred to as ABCM
1 in the sequel of the paper.

Studying the well-posedness of the initial boundary value problem related to the bound-
ary condition ABCM

1 (48)–(50) is more difficult than ABCM
0 . Indeed, the expressions of the

pseudodifferential operators involved in (49)–(50) is based on the inverse Fourier represen-
tation (10). Therefore, proving an equivalent result to Lemma 1 cannot be obtained by an
argument based on the Plancherel Theorem for a general potential V depending on x and t.
However, if V (x, t) = V (x), then the well-posedness result is trivial since ABCM

1 is strictly
equivalent to ABCM

0 . This is the aim of the next subsection.

2.6 The case V = V (x): connection between the ABCs and nu-
merical accuracy comparisons

Our goal here is to prove that ABCM
0 and ABCM

1 are equivalent if the potential does not
depend on t. This is no longer true if V is also time-dependent (we will see a modified
version of these operators for a suitable numerical approximation in Section 3.2). The result
is mainly based on the following Lemma.

Lemma 2. If a is a t-independent symbol of Sm and V (x, t) = V (x), then the following
identity holds

Op (a(τ − V (x)))u = eitVOp (a(τ))
(
e−itV u(x, t)

)
. (51)

Proof. Let us write the definition of the symbol as an inverse Fourier transform and let us
make the change of variable ρ = τ − V (x) in the considered integral. Then, we have the
following set of equalities

Op (a(τ − V (x)))u =

∫
R
a(τ − V (x)) Ft(u)(x, τ)eitτ dτ

=

∫
R
a(ρ) Ft(u)(x, ρ+ V (x)) eitρeitV (x) dρ

= eitV (x)

∫
R
a(ρ) Ft

(
t 7→ e−itV (x)u(x, t)

)
(x, ρ) eitρ dρ

= eitV (x)Op (a(τ)) (e−itV (x)u(x, t)),

leading to the proof of the Lemma.
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A direct application of the above Lemma gives the following Corollary.

Corollary 2. If the potential V is time independent, then the artificial boundary conditions
ABCM

0 and ABCM
1 are equivalent, for M = 2, 4, with V(x, t) = tV (x). In particular, the

well-posedness of the associated bounded initial value problem is immediate from Proposition
4.

Proof. The proof is direct applying Lemma 2.

Among the class of x-dependent potentials, some exact solutions are known (see e.g. [9])
since they can be related to the free-potential Schrödinger equation. It is in particular known
that the following traveling Gaussian beam

u?(x, t) =

√
i

−4t+ i
exp

(
−ix2 − k0x+ k2

0t

−4t+ i

)
(52)

is solution to (1) for V = 0 with suitable initial condition, where k0 is the wavenumber.
Then, if u is solution to (1) with the linear potential V (x) = αx, α ∈ R, and u0 = u?0, it is
given by the expression

u(x, t) = e−i (−αtx+ t3

3
|α|2) u?

(
x− t2α, t

)
. (53)

(Other solutions can be constructed for both repulsive and attractive quadratic potentials
[9].) Since the exact reference solution is known in this case for the gaussian beam, one can
compute ∂nu on the boundary of the computational domain, and compare it with −ΛM

0 u
to test the accuracy of ABCM

0 . To this aim, we fix V (x) = x and xr = 5. We present
on Figure 3 the evolution of the absolute error |∂nu + ΛM

0 u| (which should be equal to
zero for a transparent boundary condition) at the right point xr for various values of k0

and on the time interval [0;T ], setting T = 1.5. It is computed from the exact operators
representations (11) and (12) using a formal computer algebra system. For completeness,
we also provide the results when the TBC of the Schrödinger equation without potential
is used (see Equation (3)). It is labelled ”Without potential”. We directly observe that
the fourth-order ABC always gives a much better accuracy than the second-order one. The
results with the ”Without potential” TBC also lead to very large errors. Moreover, the
difference increases when higher wavenumbers are considered, which is consistent with the
a priori high-frequency asymptotic expansion (15).

3 Semi-discretization schemes and their properties

The aim of this Section is to proceed to the semi-discretization in time of the artificial
boundary conditions that we have previously developed. Let us first consider the boundary
conditions ABCM

0 . According to Proposition 3, we have

ABC2
0 : ∂nu+ e−iπ/4eiV∂

1/2
t

(
e−iVu

)
= 0, (54)

ABC4
0 : ∂nu+ e−iπ/4eiV∂

1/2
t

(
e−iVu

)
+ i sg(∂nV )

√
|∂nV |
2

eiVIt

(√
|∂nV |
2

e−iVu

)
= 0. (55)
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Figure 3: Time variations of the absolute error |∂nu+ ΛM
0 u| at xr = 5, for M = 2, 4, and for

the ”Without potential” ABC, for the exact reference solution. The potential is V (x, t) = x
and we consider four values of k0 (top, left: k0 = 5; top, right: k0 = 8; bottom, left: k0 = 10;
bottom, right: k0 = 12.
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We use the symmetrical form of ABC4
0, which is a keypoint in the case V = V (x, t). The

associated initial boundary value problem is then
i∂tu+ ∂2

xu+ V u = 0, in ΩT ,

∂nu+ ΛM
0 u = 0, on ΣT , for M = 2 or 4,

u(·, 0) = u0, in Ω,

(56)

for a maximal time of computation T .
Let us consider an interior Crank-Nicolson scheme for the time discretization of system

(56). The interval [0;T ] is uniformly discretized using N intervals. Let ∆t = T/N be the
time step and let us set tn = n∆t. Furthermore, un stands for an approximation of u(tn)
and V n = V (x, tn). If V = V (x) is a time-independent potential, then the Crank-Nicolson
discretization of the Schrödinger equation is given by

i
un+1 − un

∆t
+ ∂2

x(
un+1 + un

2
) + V

un+1 + un

2
= 0, for n = 0, . . . , N − 1. (57)

If V = V (x, t), for matters of symmetry, we choose the following time-discretization of the
interior equation

i
un+1 − un

∆t
+ ∂2

x

un+1 + un

2
+
V n+1 + V n

2

un+1 + un

2
= 0. (58)

Another possible discretization could be

i
un+1 − un

∆t
+ ∂2

x

un+1 + un

2
+
V n+1un+1 + V nun

2
= 0. (59)

Nevertheless, this discretization does not preserve the symmetry of the interior equation. As
a consequence, we are unable to prove a stability result (for discrete convolutions) with this
discretization. Thus, we will treat only the discretization given by (58) where unconditional
stability can be obtained.

Let us remark that, for implementation issues, it is often useful to set vn+1 =
un+1 + un

2
=

un+1/2, with u−1 = 0 and u0 = u0. Similarly, we set W n+1 =
V n+1 + V n

2
= V n+1/2. Then,

the time scheme (58) reads

2i
vn+1

∆t
+ ∂2

xv
n+1 +W n+1vn+1 = 2i

un

∆t
. (60)

It is well-known that a discretization of the TBC (3) which preserves the stability of the
Crank-Nicolson scheme for the free-potential Schrödinger equation is not a trivial task. We
propose here two solutions for the discretization of the ABCs that we propose. The first one
is based on semi-discrete convolutions for the fractional operators involved in (54)–(55). We
are then able to show that the resulting semi-discrete scheme is unconditionally stable. At the
same time, a solution based on convolution operators may require long computational times.
The second solution that we study is based on the approximation of the fractional operators
through the solution of auxiliary differential equations which can be solved explicitly. The
evaluation is then extremely efficient but at the same time, no stability proof is at hand.
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3.1 Discretization based on discrete convolutions

Let us first recall that if (fn)n∈N is a given sequence of complex values, we denote by Z(fn)
or f̂ the complex-valued function defined for |z| ≥ R(Z(fn)) by the series

f̂(z) = Z(fn)(z) =
+∞∑
n=0

fnz
−n,

where R(Z(fn)) is the convergence radius of the series. Then, we have the following Propo-
sition (see e.g. [4, 6]).

Proposition 6. If {fn}n∈N is a sequence of complex numbers approximating {f(tn)}n∈N, then

the approximations of ∂
1/2
t f(tn), I

1/2
t f(tn) and It f(tn) with respect to the Crank-Nicolson

scheme for a time step ∆t are given by the numerical quadrature formulas

∂
1/2
t f(tn) ≈

√
2

∆t

n∑
k=0

βn−kf
k, (61)

I
1/2
t f(tn) ≈

√
∆t

2

n∑
k=0

αn−kf
k, (62)

It f(tn) ≈ ∆t

2

n∑
k=0

γn−kf
k, (63)

where the sequences (αn)n∈N, (βn)n∈N and (γn)n∈N are such that
(α0, α1, α2, α3, α4, α5, ...) = (1, 1,

1

2
,
1

2
,
3

8
,
3

8
, ...),

βk = (−1)kαk, ∀k ≥ 0,

(γ0, γ1, γ2, γ3, ...) = (1, 2, 2, ...).

(64)

Moreover, their respective Z-transforms are given by

Z(αn)(z) = i

√
1 + z

1− z
, Z(βn)(z) = −i

√
1− z
1 + z

, Z(γn)(z) = −1 + z

1− z
, (65)

for |z| > 1.

Remark 4. Let us remark that analytical formulae for (64) are also given in [25].

The weak formulation of (58) writes, for ψ ∈ L2(Ω)

2i

∆t

∫ xr

xl

(vn+1 − un)ψdx+
[
∂xv

n+1ψ
]xr
xl
−
∫ xr

xl

∂xv
n+1∂xψdx+

∫ xr

xl

W n+1vn+1ψdx = 0. (66)

According to the interior scheme (58), the semidiscretization of ABC2
0 for v at time tn+1 is

∂nv
n+1(xl,r) = − e−iπ/4eiW n+1

√
2

∆t

n+1∑
k=0

βn+1−ke
−iW k

vk(xl,r),
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and for ABC4
0

∂nv
n+1(xl,r) = − e−iπ/4eiW n+1

√
2

∆t

n+1∑
k=0

βn+1−ke
−iW k

vk(xl,r)

− i sg(∂nW
n+1)

√
|∂nW n+1|

2
eiW

n+1 ∆t

2

n+1∑
k=0

γn+1−k

√
|∂nW k|

2
e−iW

k

vk(xl,r),

with the notation W n+1 = Vn+1+Vn
2

. Then, we have the following Proposition.

Proposition 7. The semi-discrete Crank-Nicolson scheme for the initial boundary value
problem (56) is given by

2i
vn+1 − un

∆t
+ ∂2

xv
n+1 +W n+1 vn+1 = 0, in Ω

∂nv
n+1 + ΛM,n+1

0 vn+1 = 0, on Σ, for M = 2 or 4,

u0 = u0, in Ω,

(67)

for n = 0, ..., N − 1, where vn+1 = un+1+un

2
, W n+1 = V n+1+V n

2
, and where the semi-discrete

operators Λ2,n+1
0 , Λ4,n+1

0 are defined by

Λ2,n+1
0 vn+1 = e−iπ/4eiW

n+1

√
2

∆t

n+1∑
k=0

βn+1−ke
−iW k

vk, (68)

Λ4,n+1
0 vn+1 = Λ2,n+1

0 vn+1 + i sg(∂nW
n+1)

√
|∂nW n+1|

2
eiW

n+1 ∆t

2

n+1∑
k=0

γn+1−k

√
|∂nW k|

2
e−iW

k

vk.

(69)

Here, W n+1 is defined by W n+1 =
Vn+1 + Vn

2
, Vn(x) being the approximation of V(x, tn)

using the trapezoidal rule (63) (V is given by (7)). Moreover, for M = 2, one has the
following energy inequality

∀n ∈ {0, . . . , N}, ‖un‖L2(Ω) ≤ ‖u0‖L2(Ω), (70)

and if sg(∂nW
k) is constant, then (70) also holds for M = 4. This proves the L2(Ω) stability

of the scheme. Inequality (70) is the semi-discrete version of (40) under the corresponding
assumptions.

Proof. Let us multiply the first equation of (67) by −i vp+1 and integrate by parts on Ω.
This gives, for p ≥ 0,∫

Ω

|up+1|2 − |up|2 + i=(up+1up)

2∆t
dx− i

[
vp+1 ∂xv

p+1
]xr
xl

+ i

∫
Ω

∣∣∂xvp+1
∣∣2 dx

− i
∫

Ω

W p+1
∣∣vp+1

∣∣2 dx = 0.

Since V is assumed to be real, taking the real part of this expression yields

1

∆t

‖up+1‖2
L2(Ω) − ‖up‖2

L2(Ω)

2
= <

(
i
[
vp+1 ∂xv

p+1
]xr
xl

)
.
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Summing up the terms in the above equation from p = 0 to p = n− 1, we obtain

1

2∆t

(
‖un‖2

L2(Ω) − ‖u0‖2
L2(Ω)

)
= <

(
n−1∑
p=0

i
[
vp+1 ∂xv

p+1
]xr
xl

)
=
∑
γ=l,r

Aγ, (71)

with

Aγ = <

(
n−1∑
p=0

i vp+1(xγ) ∂nv
p+1(xγ)

)
for γ = l, r. (72)

Let us focus on the right endpoint xr, the left endpoint xl can be treated similarly. We get

i vp+1(xr)∂nv
p+1(xr) = −ie−iπ/4

√
2

∆t
eiW

p+1
r vp+1

r

p+1∑
k=0

βp+1−ke
−iW k

r vkr

+ sg(∂nW
p+1
r )

∆t

2

√
|∂nW

p+1
r |

2
eiW

p+1

vp+1
r

p+1∑
k=0

γp+1−k

√
|∂nW k

r |
2

e−iW
k
r vkr

that is

n−1∑
p=0

i vp+1(xr)∂nv
p+1(xr) = −ie−iπ/4

√
2

∆t

n−1∑
p=0

χp+1
r

p+1∑
k=0

βp+1−kχ
k
r

+ sg(∂nWr)
∆t

2

n−1∑
p=0

ψp+1
r

p+1∑
k=0

γp+1−kψ
k
r , (73)

with χkr = e−iW
k
r vkr , ψkr =

√
|∂nW k

r |
2

e−iW
k
r vkr , W k

r = W k(xr) and W k
r = W k(xr). The

assumption that sg(∂nW
k
r ) is constant is fundamental here. This implies that the study of

the second term of the right-hand side of (73) reduces to the study of a symmetrical term
similar to the first term of the right-hand side. To determine the sign of the real part of the
two terms in the right-hand side of (73), we use the following Lemma.

Lemma 3. Let (βn)n and (γn)n be the sequences defined in (64). Let (ϕk)k∈N be a complex
valued sequence such that Rbϕ < 1. Then, we have the following properties

Qβ = e−iπ/4
n−1∑
p=0

ϕp+1

p+1∑
k=0

βp+1−kϕ
k ∈ R− ∪ iR− (74)

and

Qγ =
n−1∑
p=0

ϕp+1

p+1∑
k=0

γp+1−kϕ
k ∈ iR. (75)

This result immediately shows that the real part of the first term in the right-hand side
of (73) is negative, whereas the second term is purely imaginary. Finally, the inequality (70)
holds, ending hence the proof of Proposition 7.

Let us prove now Lemma 3.
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Proof of Lemma 3. Another way of writing Qβ is given by

Qβ =
n−1∑
p=0

(
ϕp+1

p+1∑
k=0

βp+1−kϕ
k

)
=

n−1∑
p=0

ϕp+1(βk ? ϕ
k)p+1 =

+∞∑
p=0

φnp+1(βk ? φ
n
k)p+1,

where we have extended (ϕk)0≤k≤n to an infinite sequence (φnk)k∈N by

φnk =

{
ϕk if k ≤ n,

(−1)jϕn if k = n+ j, with j > 0.
(76)

We recall the Plancherel theorem [11].

Lemma 4. Let us consider two sequences (fp)p∈N and (gp)p∈N. If R bfRbg < 1, then Z(fpgp)
exists for |z| > R bfRbg and we have

+∞∑
p=0

fp gp = Z
(
fpgp

)
(z = 1) =

1

2π

∫ 2π

0

f̂(reiθ) ĝ

(
eiθ

r

)
dθ, (77)

where the integration path is a circle with radius r such that R bf < r < 1/Rbg. Moreover, if
the two radii satisfy R bf < 1 and Rbg < 1, then r = 1 can be chosen in (77).

Applying Lemma 4, we have

Qβ = Z
(
φnp+1(βk ? φ

n
k)p+1

)
(z = 1) =

1

2π

∫ 2π

0

f̂(eiθ) ĝ(eiθ) dθ.

Using the shifting and convolution theorems (see e.g. [11]), we obtain

f̂(z) = Z(φnp+1)(z) =
z + 1

2
ϕ̂(z),

ĝ(z) = Z ((βk ? φ
n
k)p+1) (z) =

z + 1

2
Z ((βk ? φ

n
k)p) (z) =

z + 1

2
Z(βk)(z)ϕ̂(z),

with ϕ̂(z) = Z(ϕk)(z). Hence, a new expression of Qβ is obtained as

Qβ = − i

2π

∫ 2π

0

{∣∣∣∣z + 1

2

∣∣∣∣2 |ϕ̂(z)|2
√

1− z
1 + z

}∣∣
z=eiθ

dθ.

Moreover, since z 7→ 1− z
1 + z

maps C(0, 1) to iR, the application z 7→ −ie−iπ/4
√

1− z
1 + z

trans-

forms C(0, 1) to R− ∪ iR−, proving relation (74).
Similarly, we have for Qγ

Qγ =
1

2π

∫ 2π

0

{∣∣∣∣z + 1

2

∣∣∣∣2 |ϕ̂(z)|2Z(γn)(z)

}∣∣∣
z=eiθ

dθ

= − 1

2π

∫ 2π

0

{∣∣∣∣z + 1

2

∣∣∣∣2 |ϕ̂(z)|2 1 + z

1− z

}∣∣∣
z=eiθ

dθ.

This implies that Qγ ∈ iR since the image of C(0, 1) is iR by z 7→ 1 + z

1− z
. This finally proves

relation (75) and completes the proof of Lemma 3.
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3.2 Discretization based on auxiliary functions

While the previous strategy based on discrete convolution operators seems accurate and
provides a stability result, it may lead to significantly long computational times. Moreover,
we will see during the numerical simulations that very small time steps ∆t are required
to attain the optimal accuracy of the artificial boundary conditions based on convolution
operators. This can be relaxed using the following approach.

We saw that the ABCM
0 and ABCM

1 boundary conditions are equivalent in the case of
time independent potentials. This is no longer true for a time dependent function V . In
such a situation, the scheme developed above can be used for ABCM

0 . For ABCM
1 , the

discretizations of the resulting pseudodifferential operators involved is not easy to obtain. In
particular, the operators with square-root symbols cannot be expressed in terms of fractional
time operators since Lemma 2 does not hold. For these reasons, we introduce the following
additional approximations.

Lemma 5. The two following approximations hold

Op
(√
−τ + V

)
=
√
i∂t + V mod(OPS−3/2) (78)

and

Op

(
∂xV

4

1

−τ + V

)
= sg(∂nV )

√
|∂nV |
2

(i∂t + V )−1

√
|∂nV |
2

mod(OPS−3) (79)

Proof. Let us set A =
√
i∂t + V . The operator A is of order 1/2 and its total symbol σA

admits thus an expansion under the form: σA ∼
+∞∑
`=0

σA,1/2−`/2. Since A2 = i∂t + V , we have

σ(A2) = σ(i∂t + V ) = −τ + V ∼
+∞∑
α=0

(−i)α

α!
∂ατ σA∂

α
t σA. (80)

Using the asymptotic expansion of σA and an identification of the same order terms in (80),
we obtain the following approximation

σA = σ(
√
i∂t + V ) =

√
−τ + V − i

8

∂tV√
−τ + V

3 mod(S−5/2).

In terms of operators, this gives relation (78).
Similarly, setting B = (i∂t + V )−1, B−1 = i∂t + V and writing σ(BB−1) = 1, we get the

asymptotic expansion

σ (i∂t + V )−1 =
1

−τ + V
+

i∂tV

(−τ + V )3
mod(S−4). (81)

If σp(P ) designates the principal symbol of a pseudodifferential operator P , the following set
of equalities holds

σp

(
sg(∂nV )

√
|∂nV |
2

(i∂t + V )−1

√
|∂nV |
2

)
= sg(∂nV )

|∂nV |
4

σp (i∂t + V )−1

=
∂nV

4

1

−τ + V
.

(82)

Combining (81) and (82), we obtain (79) at the operators level.
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Thanks to Lemma 5, we now define the new approximations of ABCM
1 (see Proposition 5)

ÃBC2
1 : ∂nu− i

√
i∂t + V u = 0, (83)

ÃBC4
1 : ∂nu− i

√
i∂t + V u+ sg(∂nV )

√
|∂nV |
2

(i∂t + V )−1

(√
|∂nV |
2

u

)
= 0. (84)

Let us begin by the second-order condition (83). An alternative approach to discrete convo-
lutions (which cannot be applied here) consists in approximating the square-root operator√
i∂t + V using rational functions like in the present paper them-th order Padé approximants

[22]
√
z ≈ Rm(z) = am0 +

m∑
k=1

amk z

z + dmk
=

m∑
k=0

amk −
m∑
k=1

amk d
m
k

z + dmk
, (85)

where the coefficients (amk )0≤k≤m and (dmk )1≤k≤m are given by

am0 = 0 , amk =
1

m cos2
(

(2k+1)π
4m

) , dmk = tan2

(
(2k + 1)π

4m

)
. (86)

Formally,
√
i∂t + V is approximated by

Rm(i∂t + V ) =
m∑
k=0

amk −
m∑
k=1

amk d
m
k (i∂t + V + dmk )−1. (87)

Applying this process to the equation (83), we have the new relation

∂nu− i
m∑
k=0

amk u+ i
m∑
k=1

amk d
m
k (i∂t + V + dmk )−1 u = 0, (88)

which defines a second-order artificial boundary condition referred to as ABC2
1,m in the

sequel. To write a suitable form of the equation in view of an efficient numerical treatment,
we classically introduce m auxiliary functions ϕk, for 1 ≤ k ≤ m, (see Lindmann [19]) as
follows

ϕk = (i∂t + V + dmk )−1 u (89)

leading to the following equation

i∂tϕk + (V + dmk )ϕk = u, for 1 ≤ k ≤ m, at x = xl,r, (90)

with the initial condition ϕk(x, 0) = 0. The corresponding full artificial boundary condition
is written as a system

∂nu− i
m∑
k=0

amk u+ i

m∑
k=1

amk d
m
k ϕk = 0,

i∂tϕk + (V + dmk )ϕk = u, for 1 ≤ k ≤ m, x = xl,r,

ϕk(x, 0) = 0.

(91)
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Now, we have to discretize the above system. The semi-discretization of the interior scheme
remains the same as before (58), and consequently, (91) becomes

∂nu
n+1/2 − i

m∑
k=0

amk u
n+1/2 + i

m∑
k=1

amk d
m
k ϕ

n+1/2
k = 0,

i
ϕn+1
k − ϕnk

∆t
+ (V n+1/2 + dmk )ϕ

n+1/2
k = un+1/2,

ϕ0
k = 0,

(92)

for 1 ≤ k ≤ m and x = xl,r, that is, in terms of vn functions
∂nv

n+1 − i
m∑
k=0

amk v
n+1 + i

m∑
k=1

amk d
m
k ϕ

n+1/2
k = 0,

i
ϕn+1
k − ϕnk

∆t
+ (W n+1 + dmk )ϕ

n+1/2
k = vn+1,

ϕ0
k = 0.

(93)

The auxiliary function ϕn+1
k can be easily expressed at point xl,r as

ϕn+1
k (xl,r) =

i

∆t
−
W n+1
l,r + dmk

2
i

∆t
+
W n+1
l,r + dmk

2

ϕnk(xl,r) +
1

i

∆t
+
W n+1
l,r + dmk

2

vn+1(xl,r). (94)

Using the first equation of (93), we finally obtain

∂nv
n+1(xl,r) +

−i m∑
k=0

amk +
i

2

m∑
k=1

amk d
m
k

1

i
∆t

+
Wn+1
l,r +dmk

2

 vn+1(xl,r)

= −i
m∑
k=1

amk d
m
k

2i
∆t

i
∆t

+
Wn+1
l,r +dmk

2

ϕnk(xl,r)

2
. (95)

Equation (95) finally gives a local inhomogeneous Fourier-Robin-type ABC, where the right-
hand side is updated using (94).

Now, let us consider the fourth-order condition ÃBC4
1 given by (84)

∂nu− i
√
i∂t + V u+ sg(∂nV )

√
|∂nV |
2

(i∂t + V )−1

(√
|∂nV |
2

u

)
on Σ× R. (96)

Then, one has to introduce one more additional auxiliary function ψ such that

(i∂t + V ) ψ =

√
|∂nV |
2

u. (97)

We call ABC4
1,m the resulting approximation of ÃBC4

1 using the Padé approximation (85)
and the additional differential equation (97). Using again a Crank-Nicolson discretization of
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ψ, one gets the following approximate representation of ABC4
1,m

∂nv
n+1(xl,r)

+

−i m∑
k=0

amk +
i

2

m∑
k=1

amk d
m
k

1

i
∆t

+
Wn+1
l,r +dmk

2

+
1

2
sg(∂nW

n+1
l,r )

√
|∂nW

n+1
l,r |

2

q
|∂nWn+1

l,r |
2

i
∆t

+
Wn+1
l,r

2

 vn+1(xl,r)

= −i
m∑
k=1

amk d
m
k

2i
∆t

i
∆t

+
Wn+1
l,r +dmk

2

ϕmk (xl,r)

2
− sg(∂nW

n+1
l,r )

√
|∂nW

n+1
l,r |

2

2i
∆t

i
∆t

+
Wn+1
l,r

2

ψn(xl,r)

2
,

ϕn+1
k (xl,r) =

i
∆t
− Wn+1

l,r +dmk
2

i
∆t

+
Wn+1
l,r +dmk

2

ϕnk(xl,r) +
1

i
∆t

+
Wn+1
l,r +dmk

2

vn+1(xl,r),

ψn+1(xl,r) =
i

∆t
− Wn+1

l,r

2

i
∆t

+
Wn+1
l,r

2

ψn(xl,r) +

q
|∂nWn+1

l,r |
2

i
∆t

+
Wn+1
l,r

2

vn+1(xl,r),

ϕ0
k(xl,r) = ψ0(xl,r) = 0,

(98)
with 1 ≤ k ≤ m, and 0 ≤ n ≤ N − 1.

We previously proved (see Proposition 7) that the schemes based on the discrete con-
volutions are unconditionally stable. It does not seem to be the case when rational Padé
approximations are used. We do not have a proof of that result but let us explain why un-
conditional stability does not hold through numerical investigations. One of the keypoints
in Proposition 7 for proving the unconditional stability of the scheme based on convolution

operators is that the application F : z 7→ F (z) := −ie−iπ/4
√

1− z
1 + z

maps C(0, 1) to R−∪iR−.

The analogous stability result for the Padé approximation would essentially be obtained by

stating that it is also true for the application Fm : z 7→ Fm(z) := −ie−iπ/4Rm

(
1− z
1 + z

)
.

Unfortunately, this does not seem to be true. In particular, the image is even not in the
lower left quarter plane when z is close to the singular point −1. To illustrate this point, we
draw on Figure 4 the argument of both F and F50 and we also zoom near z = −1. As it can
be seen, sign problems can arise prohibiting an a priori possible proof of an unconditional
stability result.

4 Numerical examples

For the numerical simulations, we consider the initial gaussian datum: u0(x) = eik0x−x
2
,

where k0 designates the wave number fixed to: k0 = 10 in our simulations. Concerning the
spatial discretization, we use a variational formulation of the semi-discrete time problem for
nh elements (with size h) and integrate the ABCs in the scheme as a Fourier-Robin boundary
condition.

We split our analysis in two parts: time independent and time dependent potentials.
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Figure 4: Possible loss of stability for the rational Padé approximation. We compute the
argument of F (eiθ) and F50(eiθ) for θ ∈ [0; 2π] (left picture). We zoom near the point z = −1
in the right picture.

4.1 Time independent potentials

The first potential is given by a quadratic repulsive potential: V1(x) = x2. The computational
domain is Ω =]− 5; 15[ and the final time of computation is T = 2.5.

We present in Figure 5 the quantity log10(|u(x, t)|) in the domain ΩT . The linear finite
element method uses 8 × 103 interior points (the space step is then h = 2.5 × 10−3) and
the time step is ∆t = 10−4. We begin by representing the reference solution (top left)
computed with an exact representation formula [9]. Next, we present (top) the solutions
using ABC2

0 and ABC4
0 which show that increasing the order of the boundary conditions

yields smaller spurious reflection. Next, we compare the effect of the localization based on
the Padé approximation of order m for the second-order ABC. We choose m = 20 (ABC2

1,20)
and m = 50 (ABC2

1,50) terms. To get an equivalent precision to ABC2
0, m = 50 is required.

However, we note here that this leads to a negligible additional cost compared to m = 20.
We also see on the right bottom picture that the precision of ABC4

0 is (at least) conserved
for ABC4

1,50.
To visualize and compare the parasitic reflection, we draw (in logarithmic scale) on Figure

6 the values of the computed field |u(xl, t)| on the time interval [0;T ]. The parameters are
now ∆t = 10−4 and we take nh = 104 finite elements. Again, according to the previous
computations, we see the natural classification of the ABCs that we propose. We also observe
that, for these discretization parameters, we obtain the lowest reflection equal to 10−5.5 for
the fourth-order ABCs: ABC4

0 and ABC4
1,50. It is noticeable that a slightly lower reflection

is visible for the Padé-based boundary conditions. It is in fact related to the discretization
parameters. This is indeed confirmed on Figure 7 where we present the logarithm of the
maximum of the reflection at the left boundary for different time steps ∆t according to the
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Figure 5: log10 representation of the amplitude of the computed solutions for V1(x) = x2.
From left to right, top: reference solution, ABC2

0, ABC4
0; bottom: ABC2

1,20, ABC2
1,50,

ABC4
1,50.
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Figure 6: Reflection at the left boundary for V1(x, t) = x2 and the different ABCs.
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mesh refinement h. In particular, we can see that the Padé-type ABCs yield lower reflection
for a given time step ∆t compared to the convolution-based ABCs. This is an accuracy
advantage of these ABCs which furthermore require less computational time. At the same
time, we saw that no unconditional stability result is at hand for the Padé conditions. Finally,
it is always much better to use a fourth-order condition than a second-order one.
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Figure 7: Maximum of the reflection at the left boundary for the different ABCs, according
to the time step ∆t and spatial mesh refinement h for V1(x) = x2.

Our second test considers the following potential: V2(x) = 5(2 + cosx). We draw in
Figure 8 the amplitude (in logarithmic scale) of the computed fields in the computational
domain Ω =]−10; 10[, for T = 2. The discretization is fixed by ∆t = 10−4 and nh = 8×103.
The reference solution for V2 (and also for V3 and V4 in the next subsection) is computed
on a larger domain to avoid any effect related to reflection at the boundary. The same
comments apply as for V1. Figure 9 reports the maximum value of the reflection at the left
boundary of the computational domain for the fourth-order ABCs, ABC4

0 and ABC4
1,50, with

respect to ∆t and h. We see that the reflection decreases with h and ∆t and that it saturates
around 10−4.8. Unlike for V1, a given time discretization of an ABC leads to the same level
of accuracy (for ∆t ≤ 10−3).

4.2 Time dependent potentials

We consider now two time- and space-dependent potentials: V3(x, t) = 5xt and V4(x, t) =
x(2 + cos 2t).

In the first situation, we present on Figure 10 the fields amplitude in the domain [xl, xr] =
[−5, 10] for a final time T = 2.5. The time step is ∆t = 5.10−4 and we use nh = 8 × 103.
We see again the classification of the ABCs. Moreover, the ABC4

0 gives a slightly increased
accuracy compared to ABC4

1,50. This is confirmed on Figures 11 and 12. The first Figure
presents the traces of the fields on the left endpoint for the different ABCs (setting ∆t = 10−4,
nh = 104, T = 2.5 and [xl, xr] = [−5; 10]). Figure 12 draws the maximum of the reflection
at the left endpoint for the fourth-order ABCs according to ∆t and h.

We finally report on Figures 13 and 14 the results obtained for V4. For Figure 13, we fix
∆t = 10−4 and nh = 104. The domain of computation is: [xl, xr] = [−5, 10] and the final
time is T = 2. We see again that increasing the order of an ABC increases the accuracy.
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Figure 8: Amplitude of the computed fields for the different ABCs for V2(x) = 5(2 + cosx).

−3 −2.9 −2.8 −2.7 −2.6 −2.5 −2.4 −2.3 −2.2 −2.1
−5

−4.5

−4

−3.5

−3

−2.5

log
10

 h

lo
g 10

 M
ax

 | 
u(

 x
l , 

. )
 |

 

 

∆ t = 10−2  ABC4
0

∆ t = 10−2  ABC4
1,50

∆ t = 10−3  ABC4
0

∆ t = 10−3  ABC4
1,50

∆ t = 10−4  ABC4
0

∆ t = 10−4  ABC4
1,50

∆ t = 10−5  ABC4
0

∆ t = 10−5  ABC4
1,50

Figure 9: Reflection at the left boundary for V2(x) = 5(2+cosx) according to the discretiza-
tion parameters ∆t and h for the fourth-order conditions: ABC4

0 and ABC4
1,50.
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Figure 10: Amplitude of the computed fields for the different ABCs for V3(x, t) = 5xt.
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Figure 12: Maximum of the reflection at the left boundary for the different ABCs, according
to the time step ∆t and spatial mesh refinement h for V3(x, t) = 5xt.
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Figure 13: Amplitude of the computed fields for the different ABCs for V4(x, t) = x(2 +
cos 2t).
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Figure 14: Maximum of the reflection at the left boundary for the different ABCs, according
to the time step ∆t and spatial mesh refinement h for V4(x, t) = x(2 + cos 2t).

Unlike the previous case, ABC4
1,50 yields slightly lower reflection than ABC4

0. This can also
be observed on Figure 14 for a given ∆t.

5 Conclusion

This paper provides various constructions of Absorbing Boundary Conditions (ABCs) for
the one-dimensional Schrödinger equation with time- and space-variable repulsive potentials.
This kind of problems includes many interesting situations met in physics and applications.
A complete mathematical analysis has been presented to emphasize the strengths and limi-
tations of the different approaches. Next, a numerical analysis of associated unconditionally
stable schemes has been fully developed. Numerical examples compare the different ABCs
of various orders, showing that fourth-order ABCs yield accurate computations.

This work can be seen as a first step towards the derivation of more complex situations
like higher-dimensional Schrödinger equations [6, 16] (or also coupled systems of Schrödinger
equations [29, 28]) with potentials and nonlinearities. These present additional computa-
tional difficulties and will be the subject of forthcoming developments.
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quasi-homogènes. Ann. Inst. Fourier (Grenoble), 27 (2):79–123, 1977.

[18] M. Levy. Parabolic equation methods for electromagnetic wave propagation, volume 45 of
IEE Electromagnetic Waves Series. Institution of Electrical Engineers (IEE), London,
2000.

[19] E. Lindmann. Free-space boundary conditions for the time dependent wave equation.
J. Comput. Phys., 18:16–78, 1985.

[20] E. Lorin, A. Bandrauk, and S. Chelkowski. Numerical Maxwell-Schrödinger model for
laser-molecule interaction and propagation. Comput. Phys. Comm., 177 (12):908–932,
2007.

[21] E. Lorin, A. Bandrauk, and S. Chelkowski. Mathematical modeling of boundary condi-
tions for laser-molecule time dependent Schrödinger equations and some aspects of their
numerical computation - one-dimensional case. in press, Numer. Meth. for P.D.E., 2008.

[22] F. Milinazzo, C. Zala, and G. Brooke. Rational square-root approximations for parabolic
equation algorithms. J. Acoust. Soc. Amer., 101 (2):760–766, 1997.

[23] J. Muga, J. Palao, B. Navarro, and I. Egusquiza. Complex absorbing potentials. Physics
Reports-Review Section of Physics Letters, 395 (6):357–426, 2004.

[24] L. Nirenberg. Pseudodifferential operators and some applications, volume 17 of Regional
Conf. Ser. in Math. AMS 17, Lectures on Linear Partial Differential Equations. AMS,
1973.

[25] C. Zheng. Approximation, stability and fast evaluation of exact artificial boundary
condition for the one-dimensional heat equation. J. Comput. Math., 25 (6):730–745,
2007.

[26] C. Zheng. A perfectly matched layer approach to the nonlinear Schrödinger wave equa-
tions. J. Comput. Phys, 227:537–556, 2007.

[27] C. Zheng. An exact absorbing boundary condition for the Schrödinger equation with
sinusoidal potentials at infinity. Comm. Comput. Phys., 3 (3):641–658, 2008.

[28] A. Zisowsky. Discrete Transparent Boundary Conditions for Systems of Evolution Equa-
tions. Ph.D. Thesis. TU Berlin, 2003.

[29] A. Zisowsky, A. Arnold, M. Ehrhardt, and T. Koprucki. Discrete transparent bound-
ary conditions for transient kp-Schrödinger equations with application to quantum-
heterostructures. Journal of Applied Mathematics and Mechanics (ZAMM), 85:793–805,
2005.

33


